Cho x-y=7 . Giá trị của biểu thức
H=x^2(x+1) - y^2(y-1) + xy - 3xy(x-y+1) - 95 là:
\(H=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\) 95
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N I K'
a) Ta có: AC=AN+NC=12,5
=> \(\frac{AN}{AC}=\frac{7,5}{12,5}=\frac{3}{5}=\frac{AM}{AB}\)
Theo định lí Talet => MN//BC
b) Với I là trung điểm MN , Gọi K' là giao điểm của AI và BC ta chứng minh K' trùng với K
Vì MN//BC nên ta có: \(\frac{MI}{BK'}=\frac{IN}{K'C}\left(=\frac{AI}{AK'}\right)\)
Mà MI=IN (I là trung điểm )=> BK'=K'C , K' thuộc BC => K' là trung điểm BC theo đề bài K cũng là trung điểm BC => K' trùng K
=> A, I, K thẳng hàng
Thử n = 1 \(\Rightarrow4+15-10=9⋮9\).Vậy mệnh đề đúng với n = 1
Giả sử n = K đúng với mọi n thuộc N
\(\Rightarrow4^K+15K-10⋮9\)
Giờ ta cần chứng minh mệnh đề cũng đúng với n = K + 1
Thật vậy ta có :\(\Rightarrow4^{K+1}+15\left(K+1\right)-10\)
\(=4^K.4+15K+5\)
\(=4^K.4+4.15K-4.10+45\)
\(=4\left(4^K+15K-10\right)+5.9\)
Do \(4^K+15K-10⋮9\left(B2\right)\)
\(45⋮9\)
\(\Rightarrow\)Mệnh đề cũng đúng với n = K + 1
Vậy đpcm.
PP quy nạp toán học lớp 11
Ta có x+y=1=>(x+y)2=1
=> x2+2xy+y2=1 mà x2+y2=2
=>2xy=...=>xy=...
lại có (x+y)3=1
=> x3+3x2y+3xy2+y3=1
=>x3+y3+3xy(x+1)=1 biết x+y,xy thay vào bn sẽ tìm đc x3+y3
tk mk nha
\(H=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)
\(H=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-95\)
\(\Leftrightarrow H=x^3-3x^2y+3xy^2-y^3+x^2-2xy+y^2-95\)
\(\Leftrightarrow\left(x-y\right)^3+\left(x-y\right)^2-95\)
\(\Leftrightarrow H=7^3+7^2-95=297\)