tìm chữ số tận cùng của 4567^2014
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 15/11 - (5/7 - 18/11) + 27/7
= 15/11 - 5/7 + 18/11 + 27/7
= (15/11 + 18/11) + (-5/7 + 27/7)
= 3 + 22/7
= 43/7
b) 39/5 + (9/4 - 9/5) - (5/4 + 1,2)
= 39/5 + 9/4 - 9/5 - 5/4 - 6/5
= (39/5 - 9/5 - 6/5) + (9/4 - 5/4)
= 24/5 + 1
= 29/5
c) -1,2 - 0,8 + 0,25 + 5,75 - 2022
= (-1,2 - 0,8) + (0,25 + 5,76) - 2022
= -2 + 6 - 2022
= 4 - 2022
= -2018
d) 0,1 + 16/9 + 5,1 + (-20/9)
= (0,1 + 5,1) + (16/9 - 20/9)
= 5,2 - 4/9
= 419/90
a) \(\dfrac{15}{11}-\left(\dfrac{5}{7}-\dfrac{18}{11}\right)+\dfrac{27}{7}=\dfrac{22}{7}+3=\dfrac{43}{77}\)
b) \(\dfrac{39}{5}+\left(\dfrac{9}{4}-\dfrac{9}{5}\right)-\left(\dfrac{5}{4}+\dfrac{6}{5}\right)=\dfrac{24}{5}+1=\dfrac{29}{5}\)
c) \(-1,2-0,8+0,25+5,75-2022=-2+6-2022=-2018\)
d) \(0,1+\dfrac{16}{9}+5,1+\dfrac{-20}{9}=\dfrac{26}{5}-\dfrac{4}{9}=\dfrac{214}{45}\)
Bạn xem bài tương tự tại đây. Đề là:
Tính $(1+\frac{1}{1.3})(1+\frac{1}{2.4})....(1+\frac{1}{2021.2023})$
\(\dfrac{1}{7}\left(\dfrac{7}{3.10}+\dfrac{7}{10.17}+...+\dfrac{7}{73.80}-\left(\dfrac{7}{2.9}+\dfrac{7}{9.16}+...+\dfrac{7}{23.30}\right)\right)\)
\(=\dfrac{1}{7}\left(\dfrac{1}{3}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{17}+...+\dfrac{1}{73}-\dfrac{1}{80}-\left(\dfrac{1}{2}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...+\dfrac{1}{23}-\dfrac{1}{30}\right)\right)\)
\(=\dfrac{1}{7}\left(\dfrac{1}{3}-\dfrac{1}{80}-\left(\dfrac{1}{2}-\dfrac{1}{30}\right)\right)\)
\(=\dfrac{1}{7}\left(\dfrac{77}{240}-\dfrac{7}{15}\right)=\dfrac{1}{7}.\left(-\dfrac{7}{48}\right)=-\dfrac{1}{48}\)
\(-2x^2=-32\)
\(\Rightarrow x^2=\dfrac{-32}{-2}\)
\(\Rightarrow x^2=16\)
\(\Rightarrow x^2=4^2\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
Vậy: ...
\(\left(3-\dfrac{1}{4}+\dfrac{2}{3}\right)-\left(5-\dfrac{1}{3}-\dfrac{6}{5}\right)-\left(6-\dfrac{7}{4}+\dfrac{3}{2}\right)\)
\(=3-\dfrac{1}{4}+\dfrac{2}{3}-5+\dfrac{1}{3}+\dfrac{6}{5}-6+\dfrac{7}{4}-\dfrac{3}{2}\)
\(=\left(3-5-6\right)-\left(\dfrac{1}{4}-\dfrac{7}{4}\right)-\dfrac{3}{2}+\left(\dfrac{2}{3}+\dfrac{1}{3}\right)+\dfrac{6}{5}\)
\(=-8-\dfrac{6}{4}-\dfrac{3}{2}+\dfrac{3}{3}+\dfrac{6}{5}\)
\(=-8-\dfrac{3}{2}-\dfrac{3}{2}+1+\dfrac{6}{5}\)
\(=-7-3+\dfrac{6}{5}\)
\(=\dfrac{6}{5}-10\)
\(=-\dfrac{44}{5}\)
Lời giải:
Ta thấy:
$4567^2=....9\equiv -1\pmod {10}$
$\Rightarrow (4567)^{2014}=(4567^2)^{1007}\equiv (-1)^{1007}\equiv -1\equiv 9\pmod {10}$
$\Rightarrow 4567^{2014}$ tận cùng là $9$.