Cho tam giác ABC vuông tại A, góc C = 40°. Tính AC,BC: biết AB = 8cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để lập được nhiều nhất các số lẻ có hai chữ số từ 5 thẻ số 1, 2, 3, 4, 5, Đăng cần chọn ba thẻ số 1, 3 và 5. Khi đó, ta có thể lập được 9 số lẻ có hai chữ số, đó là: 11, 13, 15, 31, 33, 35, 51, 53, 55.
285.x+115.x=400
(285+115).x=400
400.x=400
x=\(\dfrac{400}{400}\)
x=1
Gọi 2 số chính phương lẻ là: 2a+1; 2b+1
ĐK: a, b ϵ N
Theo bài ra, ta có
\(\left(2a+1\right)^2+\left(2b+1^2\right)\)
= \(4a^2+4a+1+4b^2+4b+1\)
= \(4\left(a^2+a+b^2+b\right)+2\)
Vì \(4\left(a^2+a+b^2+b\right)⋮4\)
\(2:4\) dư 2
⇒\(4\left(a^2+a+b^2+b\right)+2:4\) dư 2
Mà số chính phương chia 4 dư 0 hoặc 1
⇒\(\left(2a+1\right)^2+\left(2b+1\right)^2\) không phải SCP
Vậy tổng bình phương của 2 số lẻ bất kì ko là số chính phương
\(tanC=\dfrac{AB}{AC}\Rightarrow AC=\dfrac{AB}{tanC}=\dfrac{8}{tan40^o}=9,52\left(cm\right)\)
\(sinC=\dfrac{AB}{BC}\Rightarrow BC=\dfrac{AB}{sinC}=\dfrac{8}{sin40^o}=12,5\left(cm\right)\)