giúp mình với
tìm x,y,z
a,-3x=7y=21z và 5x+10y+6z=4
b,x/2=y/5;y/3=z/20 và y nhân z =900
c,x/2=y/5 và x^2+y^2=116
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài nãy dễ thôi
Do x,y có vai trò như nhau nên KMTTQ, g/s x>=y
TH1; x=y => 3x+1 chia hết cho x
=> 1 chia hết cho x=> x=1=> Loại do x>1.
TH2 x>y=> 3x>3y=> 3x+1>3y+1 (1)
Có 3y+1 chia hết cho x
=> 3y+1=kx (k thuộc N*) (2)
(1), (2) => 3x+1>kx
=> k=1;2;3
*k=1=> 3y+1=x=> 9y+3=3x=> 9y+4=3x+1
Có 3x+1 chia hết cho y
=> 9y+4 chia hết cho y
=> 4 chia hết cho y
=> y=2;4 => x=7; 13.
*k=2 => 3y+1=2x=>9y+3=6x
Có 3x+1 chia hết cho y=> 6x+2 chia hết cho y
=> 9y+3 chia hết cho y
=> 3 chia hết cho y
=> y= 3 => x=5.
*k=3=> 3y+1=3x=> 3y+2=3x+1
Có: 3x+1 chia hết cho y
=> 3y+2 chia hết cho y
=> 2 chia hết cho y
=> y=2=>x ko có giá trị.
a)
<=> x+y=0 hoặc 2x-1=0
<=> x=-y hoặc x=1/2.
b)
=> x+y và 2x-1 là ước của 3 =1;3;-1;-3.
Do 2x-1 ko chia hết cho 2
TH1=> 2x-1=-1 và x+y=-3
=> x=0 và y=-3
TH2: 2x-1=1 và x+y=3
=> x=1 và y=2.
c) <=>x(y+1)-2y-2=1
<=> x(y+1)-2(y+1)=1
<=> (x-2)(y+1)=1
=> x-2; y+1 là ước của 1 =1;-1
TH1 x-2=1 và y+1=1
=> x=3 và y=0
TH2 x-2=-1 và y+1=-1
=> x=1 và y=-2.
( x + y ).( 2x - 1 ) = 0
\(\Rightarrow\orbr{\begin{cases}x+y=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x+y=0\\2x=0+1\end{cases}\Rightarrow}\orbr{\begin{cases}x+y=0\\2x=1\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{2}+y=0\\x=\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}y=0+\frac{1}{2}\\x=\frac{1}{2}\end{cases}\Rightarrow\orbr{\begin{cases}y=\frac{1}{2}\\x=\frac{1}{2}\end{cases}}}\)
Vậy ...................
Vì \(AB//CD,AD//BC\)\(\Rightarrow\widehat{DAC}=\widehat{ACB},\widehat{BAC}=\widehat{DCA}\left(slt\right)\)
\(\Rightarrow\Delta ADC=\Delta CBA\left(g.c.g\right)\)\(\Rightarrow AB=CD,AD=BC\left(đpcm\right)\)
A B C D 1 1 2 2
Xét tam giác ABC và ACD, ta có : \(\widehat{A_1}=\widehat{C_1}\)( \(AB//CD\)), \(\widehat{A_2}=\widehat{C_2}\)( \(AD//BC\)) và AC là cạnh chung => \(\Delta ABC=\Delta CDA\left(g.c.g\right)\)=>AB = CD và AD = DC (đpcm).
D E F M I H G = = - - x x
Vì M là trung điểm của EF => ME = MF
Xét △MDE và △MIF
Có : ME = MF (gt)
DME = FMI (2 góc đối đỉnh)
MD = MI (gt)
=> △MDE = △MIF (c.g.c)
=> DE = IF (2 cạnh tương ứng)
Và DEM = MFI (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> DE // IF (dhnb)
b, Vì △MDE = △MIF (cmt)
=> DE = IF (2 cạnh tương ứng)
Xét △HDE vuông tại H và △HGE vuông tại H
Có: HD = HG (gt)
HE : cạnh chung
=> △HDE = △HGE (cgv)
=> DE = GE (2 cạnh tương ứng)
Mà DE = IF (cmt)
=> EG = IF (đpcm)
ta có góc b và e là 2 góc tương ứng góc c và f là 2 góc tương ứng suy ra chịu..........
Theo bài ra ta có : \(\frac{x}{5}-\frac{1}{y}=\frac{1}{2}\)
\(\Rightarrow\frac{xy-5}{5y}=\frac{1}{2}\)
\(\Rightarrow2\left(xy-5\right)=5y\)
\(\Rightarrow2xy-10-5y=0\)
\(\Rightarrow y\left(2x-5\right)=10\)
mà 10 = 2.5 = (-2).(-5) = 1.10 = (-1).(-10)
Lập bảng xét 8 trường hợp :
x | 10 | 1 | 2 | 5 | -2 | -5 | -1 | -10 |
2x - 5 | 7,5 | 3(tm) | 3,5 | 5(tm) | -1,5 | 0(tm) | 2(tm) | -2,5 |
y | 1 | 10 | 5 | 2 | -5 | -2 | -10 | -1 |
Vậy các cặp (x;y) thỏa mãn bài toán là : (3;10) ; (5;2) ; (0;-2) ; (2;-10)
a) Ta có: \(-3x=7y=21z\)
\(\Rightarrow-3x\cdot\frac{1}{21}=7y\cdot\frac{1}{21}=21z\cdot\frac{1}{21}\)
\(\Rightarrow\frac{x}{-7}=\frac{y}{3}=\frac{z}{1}=\frac{5x}{-35}=\frac{10y}{30}=\frac{6z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{-35}=\frac{10y}{30}=\frac{6z}{6}=\frac{5x+10y+6z}{-35+30+6}=\frac{4}{1}=4\)
\(\Rightarrow\hept{\begin{cases}\frac{5x}{-35}=4\rightarrow5x=-140\rightarrow x=-28\\\frac{10y}{30}=4\rightarrow10y=120\rightarrow y=12\\\frac{6z}{6}=4\rightarrow z=4\end{cases}}\)
Vậy x= -28; y=12; z=4
b) Ta có: \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\rightarrow\frac{x}{6}=\frac{y}{15}\\\frac{y}{3}=\frac{z}{20}\rightarrow\frac{y}{15}=\frac{z}{100}\end{cases}}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{100}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{100}=k\)
\(\Rightarrow x=6k;y=15k;z=100k\)
\(y\cdot z=900\rightarrow15k\cdot100k=900\)
\(\rightarrow1500\cdot k^2=900\)
\(\rightarrow k^2=\frac{3}{5}\rightarrow k\varepsilon\varnothing\)
Vậy x;y;z ko có giá trị thỏa mãn
c) Ta có: \(\frac{x}{2}=\frac{y}{5}=\frac{x^2}{4}=\frac{y}{25}^2\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{4}=\frac{y^2}{25}=\frac{x^2+y^2}{4+25}=\frac{116}{29}=4\)
\(\Rightarrow\hept{\begin{cases}\frac{x^2}{4}=4\rightarrow x^2=16\rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\\\frac{y^2}{25}=4\rightarrow y^2=100\rightarrow\orbr{\begin{cases}y=10\\y=-10\end{cases}}\end{cases}}\)\(\Rightarrow\frac{x^2}{4}=4\rightarrow x^2=16\rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
\(\frac{y^2}{25}=4\rightarrow y^2=100\rightarrow\orbr{\begin{cases}y=10\\y=-10\end{cases}}\)
Vậy (x;y) = (4;10); (-4;-10)