Câu 38. Trong mặt phẳng tọa độ $O x y$, cho điểm $M(-1 ; 1)$ và đường thẳng $\Delta: 3 x-4 y-3=0$.
a) Viết phương trình đường thẳng qua $M$ và có vectơ chỉ phương $\overrightarrow{u}=(4 ;-2)$.
b) Tính khoảng cách từ điểm $M$ đến đường thẳng $\Delta$.
c) Viết phương trình tổng quát đường thẳng qua $K(-1 ; 2)$ và vuông góc với đường thẳng $\Delta$.
a) Vector chỉ phương \(\overrightarrow{u}\left(4;-2\right)\)
=> Vector pháp tuyến \(\overrightarrow{n}\left(2;4\right)\)
Phương trình (d) : 2(x + 1) + 4(y - 1) = 0
<=> x + 2y - 1 = 0
b) \(d\left(M,\Delta\right)=\dfrac{\left|3.\left(-1\right)-4.1-3\right|}{\sqrt{3^2+\left(-4\right)^2}}=2\)
c) Do đường thẳng \(d_1\perp\Delta\)
nên \(\overrightarrow{u}\left(4;-2\right)\) là vector pháp tuyến của (d1)
Phương trình tổng quát :
4(x + 1) - 2(y - 2) = 0
<=> 2x - y + 4 = 0