\(\sqrt{a}\)+ \(\sqrt{b}\)= \(\sqrt{2019}\)a,b thuộc tập Z. Tìm a,b.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2=z^2\)
Công thức tổng quát có dạng:
\(x=k\left(m^2-n^2\right),y=k2mn,z=k\left(m^2+n^2\right)\)(\(m,n\inℤ\))
\(xyz=k^32mn\left(m^4-n^4\right)\)
- Chứng minh \(xyz\)chia hết cho \(3\):
Nếu \(m,n\)có ít nhất một số chia hết cho \(3\)suy ra \(xyz\)chia hết cho \(3\).
Nếu \(m,n\)đều không chia hết cho \(3\)suy ra \(m^4,n^4\)đều chia cho \(3\)dư \(1\)
suy ra \(m^4-n^4\)chia hết cho \(3\).
Suy ra \(xyz\)chia hết cho \(3\).
- Chứng minh \(xyz\)chia hết cho \(4\):
Nếu \(m,n\)có ít nhất một số chẵn suy ra \(2mn\)chia hết cho \(4\)
suy ra \(xyz\)chia hết cho \(4\).
Nếu \(m,n\)đều lẻ thì \(m^4,n^4\)đều lẻ nên \(m^4-n^4\)chẵn.
Suy ra \(xyz\)chia hết cho \(4\).
- Chứng minh \(xyz\)chia hết cho \(5\):
Nếu \(m,n\)có ít nhất một số chia hết cho \(5\)suy ra \(xyz\)chia hết cho \(5\).
Nếu \(m,n\)đều không chia hết cho \(5\)suy ra \(m^4,n^4\)đều chia cho \(5\)dư \(1\)
suy ra \(m^4-n^4\)chia hết cho \(5\).
Suy ra \(xyz\)chia hết cho \(5\).
Vậy \(xyz\)chia hết cho cả \(3,4,5\)mà \(3,4,5\)đôi một nguyên tố cùng nhau suy ra \(xyz\)chia hết cho \(3.4.5=60\).
Ta có đpcm.
Suy ra \(xyz\)chia hết cho \(3\).
\(\left(-5\right)^2-4.\left(-3\right)\left(-2\right)=25-24=1>0\)
Suy ra pt luôn có 2 nghiệm phân biệt
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-5}{3}\\x_1x_2=\dfrac{2}{3}\end{matrix}\right.\)
\(M=x_1+\dfrac{1}{x_1}+\dfrac{1}{x_2}+x_2\\ =\left(x_1+x_2\right)+\dfrac{x_1+x_2}{x_1x_2}\\ =\dfrac{-5}{3}+\dfrac{-5}{3}:\dfrac{2}{3}\\ =\dfrac{-5}{3}-\dfrac{5}{2}\\ =\dfrac{-25}{6}\)
-3x2-5x-2=0
Ta có :-3-(-5)-2=0
=>Phương trình có 2 nghiệm \(\hept{\begin{cases}x_1=-1\\x_2=\frac{-5}{3}\end{cases}}\)
Thay x1;x2 vào M ta được:
M=(-1)+\(\frac{1}{-1}\)+\(\frac{1}{\frac{-5}{3}}\)+\(\frac{-5}{3}\)
=(-1)+(-1)+\(-\frac{3}{5}+-\frac{5}{3}\)
=\(-\frac{64}{15}\)
Đặt x+y=a; x-y=b
Hệ \(\Leftrightarrow\left\{{}\begin{matrix}3a-2b=9\\2a+b=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a-2b=9\\4a+2b=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a-2b=9\\7a=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3-2b=9\\a=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-3\\a=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=-3\\x+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=-2\\x+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\-1+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+5y=9\\3x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+5y=9\\15x+5y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}14x=-14\\y=\dfrac{9-x}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Không vẽ hình vì sợ duyệt.
a) Dễ thấy \(\widehat{CMD}=90^0\)(góc nội tiếp chắn nửa đường tròn)
Theo đề bài, ta thấy \(\widehat{COF}=90^0\) , từ đó \(\widehat{CMD}=\widehat{COF}\left(=90^0\right)\)
Xét tứ giác ODMF, có \(\widehat{COF}\) là góc ngoài tại O và\(\widehat{COF}=\widehat{DMF}\)\(\Rightarrow\)Tứ giác ODMF là tứ giác nội tiếp (dhnb)
b) Xét (O) có \(\widehat{EFM}\)là góc có đỉnh bên trong đường tròn nên \(\widehat{EFM}=\frac{sđ\widebat{AC}+sđ\widebat{BM}}{2}\)
Mặt khác \(sđ\widebat{BC}=sđ\widebat{AC}\left(=90^0\right)\)nên \(\widehat{EFM}=\frac{sđ\widebat{BC}+sđ\widebat{BM}}{2}=\frac{sđ\widebat{CM}}{2}\)(1)
Lại có \(\widehat{EMC}\)là góc tạo bởi tia tiếp tuyến ME và dây MC nên \(\widehat{EMC}=\frac{1}{2}sđ\widebat{CM}\)(2)
Từ (1) và (2) \(\Rightarrow\widehat{EFM}=\widehat{EMC}\left(=\frac{1}{2}sđ\widebat{CM}\right)\)\(\Rightarrow\Delta EFM\)cân tại E.
c) Bạn xem lại đề.
a, CME là góc tạo bởi tia tiếp tia tiếp tuyến và dây cung => CME= 1/2 sđ cung MC
CDM là góc nội tiếp đường tròn => CDM = 1/2 sđ cung MC
=> CME = CDM = OMD ( do tg ODM cân , OD= OM= R)
Mà CME + CMO = 90 độ => CMO + OMD = 90 <=> DMF = 90 độ
Tg ODMF có DOF + DMF = 180 độ
=> Tg ODMF là tg nội tiếp (tổng hai góc đối = 180 độ)
b, Tg ODMF nội tiếp => ODM = MFE ( góc trong = góc ngoài đỉnh đối diện )
Mà ODM = EMF = 1/2 sđ cung MC => EMF = EFM
=> Tg EFM cân tại E
c, Bạn xem lại thử đề nhé :v mk vẽ hình có vẻ ko đùng lắm
\(\Delta'=\left(k-1\right)^2+4k=k^2+2k+1=\left(k+1\right)^2\ge0;\forall k\)
\(\Rightarrow\) Phương trình luôn có nghiệm với mọi k
b. Để phương trình có 2 nghiệm pb \(\Rightarrow k\ne-1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(k-1\right)\\x_1x_2=-4k\end{matrix}\right.\)
Kết hợp với điều kiện đề bài ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(k-1\right)\\3x_1-x_2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2k-2\\4x_1=2k\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{k}{2}\\x_2=\dfrac{3k-4}{2}\end{matrix}\right.\)
Thế vào \(x_1x_2=-4k\)
\(\Rightarrow\dfrac{k}{2}.\left(\dfrac{3k-4}{2}\right)=-4k\)
\(\Leftrightarrow3k^2-4k=-16k\)
\(\Leftrightarrow3k^2+12k=0\Rightarrow\left[{}\begin{matrix}k=0\\k=-4\end{matrix}\right.\)