K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2022

Hoành độ giao điểm tm pt 

\(x^2-mx+3=0\)

\(\Delta=m^2-4.3=m^2-12\)

Để pt có 2 nghiệm pb khi m^2 - 12 > 0 

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=3\end{matrix}\right.\)

Ta có \(\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=4\)

Thay vào ta được \(m^2-6-2.3=4\Leftrightarrow m^2-16=0\Leftrightarrow m=4;m=-4\)(tm)

9 tháng 3 2022

Bạn phải nắm chắc kĩ thuật chọn điểm rợi. Ví dụ:

Cho \(a\ge3\), tìm GTNN của \(A=a+\frac{1}{a}\)

Ta dự đoán dấu "=" xảy ra khi \(a=3\)

Nếu áp dụng thẳng BĐT Cô-si cho 2 số dương \(a\)và \(\frac{1}{a}\), khi đó dấu "=" xảy ra khi \(a=\frac{1}{a}\Leftrightarrow a^2=1\Leftrightarrow a=\pm1\)trái với \(a\ge3\)

Do đó ta cần tách \(a\)thành 2 hạng tử trong đó có hạng tử \(ka\)khi Cô-si với \(\frac{1}{a}\)sẽ đảm bảo dấu "=" xảy ra khi \(a=3\)

Mặt khác khi Cô-si \(ka\)với \(\frac{1}{a}\), dấu "=" xảy ra khi \(ka=\frac{1}{a}\), điều này đồng nghĩa với việc \(3k=\frac{1}{3}\)hay \(k=\frac{1}{9}\)

Như vậy ta sẽ tách như sau:

\(A=\frac{1}{9}a+\frac{1}{a}+\frac{8}{9}a\)

Áp dụng Cô-si cho 2 số \(\frac{1}{9}a\)và \(\frac{1}{a}\), ta có \(\frac{1}{9}a+\frac{1}{a}\ge2\sqrt{\frac{1}{9}a.\frac{1}{a}}=\frac{2}{3}\)

Lại có \(a\ge3\)\(\Leftrightarrow\frac{8}{9}a\ge\frac{8}{9}.3=\frac{8}{3}\)

Vậy \(A\ge\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)

Dấu "=" xảy ra khi \(a=3\)

Vậy GTNN của A là \(\frac{10}{3}\)khi \(a=3\)

9 tháng 3 2022

a, \(x-5=1\Leftrightarrow x=6\left(tmđk\right)\)

b, \(M=2017-\left[49-\left(\sqrt{27}+\sqrt{3}\right)^2\right]\)

\(=2017-\left(49-27-2\sqrt{81}-3\right)\)

\(=2017-\left(49-27-18-3\right)=2016\)

\(P=\left(\frac{2x+1}{\sqrt{x^3}-1}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right):\left(\frac{3}{\sqrt{x}-1}+\frac{2\sqrt{x}+5}{1-x}\right)\)

\(ĐKXĐ:x\ge0,x\ne1\)

\(P=\frac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\frac{\left(\sqrt{x}+1\right)-\left(2\sqrt{x}+5\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-2}=\frac{\sqrt{x}+1}{\sqrt{x}-2}\)

b, \(x=\frac{8}{3-\sqrt{5}}=\frac{2\left(9-5\right)}{3-\sqrt{5}}=2\left(3+\sqrt{5}\right)\)

\(=5+2\sqrt{5}+1=\left(\sqrt{5}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{5}+1\)

\(\Rightarrow P=\frac{\sqrt{5}+1+1}{\sqrt{5}+1-2}=\frac{\sqrt{5}+2}{\sqrt{5}-1}\)

c, \(P=\frac{\sqrt{x}-2+3}{\sqrt{x}-2}=1+\frac{3}{\sqrt{x}-2}\in N\)\(\Rightarrow\frac{3}{\sqrt{x}-2}\in Z\)

\(\Rightarrow\sqrt{x}-2\inƯ\left(3\right)\)


 

\(\sqrt{x}-2\)\(x\)\(P\)
\(-3\)( loại )0
\(-1\)( loại )-2
\(1\)4
\(3\)25 2

\(\Rightarrow x\in\left\{9;25\right\}\)

18 tháng 12 2024

Bạn ơi, thay x=25/4 vẫn ra P là số tự nhiên nhá, thiếu kìa