cho a,b,c>0. chứng minh rằng a^2+b^2+c^2>=ab+bc+ca cuuuuuuc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Giải:
Gọi vận tốc trung bình của xe thứ hai là: \(x\) (km/h)
Vận tốc trung bình của xe thứ nhất là:
\(x+5\) (km/h)
Thời gian xe thứ nhất đi hết quãng đường từ Hà Nội tới Hải Phòng là:
9 giờ 40 phút - 7 giờ = 2 giờ 40 phút
2 giờ 40 phút = \(\frac83\) giờ
Thời gian xe thứ hai đi hết quãng đường từ Hà Nội tới Hải Phòng là:
2 giờ 40 phút + 20 phút = 3 giờ
Theo bài ra ta có phương trình:
(\(x+5\)) x \(\frac83\) = \(x\) x \(3\)
8\(x\) + 40 = 9\(x\)
9\(\)\(x-8x\) = 40
\(x=40\)(thỏa mãn)
Vận tốc trung bình của xe thứ hai là: 40km/h
Vận tốc trung bình của xe thứ nhất là: 40 + 5 = 45(km/h)
Kết luận: Vận tốc trung bình của xe thứ nhất là: 45km/h
Vận tốc trung bình của xe thứ hai là: 40km/h

Giải:
Gọi thời gian tổ một hoàn thành công việc là \(x\)(giờ) \(x>0\)
Thời gian tổ hai hoàn thành công việc là: \(x+\) 6 (giờ)
Trong một giờ tổ một làm được là:
1 : \(x\) = \(\frac{1}{x}\)(giờ)
Trong hai giờ tổ hai làm được là:
1 : (\(x+6\)) = \(\frac{1}{x+6}\) (giờ)
Trong một giờ hai tổ cùng làm được:
\(\frac{1}{x}\) + \(\frac{1}{x+6}\) = \(\frac{2x+6}{x\left(x+6\right)}\)
Theo bài ra ta có phương trình:
1 : \(\frac{2x+6}{x\left(x+6\right)}\) = 4
\(\frac{x\left(x+6\right)}{2x+6}\) = 4
\(x^2+6x\) = 4.(\(2x+6\))
\(x^2+6x\) = 8\(x\) + 24
\(x^2\) + 6\(x\) - 8\(x\) - 24 = 0
\(x^2\) - (8\(x-6x\)) - 24 = 0
\(x^2-2x\) - 24 = 0
Δ' = 1 - (-24) = 25 > 0
Phương trình có hai nghiệm phân biệt:
\(x_1\) = [ -(-1) + \(\sqrt{25}\) ]: = 6 (nhận)
\(x_2\) = [-(-1) - \(\sqrt{25}\) ] = - 4 (loại)
Thời gian đội một làm một mình xong công việc là: 6 giờ
Thời gian đội hai làm một mình xong công việc là:
6 + 6 = 12 (giờ)
Kết luận: Đội một làm một mình xong công việc sau 6 giờ
Đội hai làm một mình xong công việc sau 12 giờ
Giải:
Gọi thời gian tổ một hoàn thành công việc là \(x\)(giờ) \(x > 0\)
Thời gian tổ hai hoàn thành công việc là: \(x +\) 6 (giờ)
Trong một giờ tổ một làm được là:
1 : \(x\) = \(\frac{1}{x}\)(giờ)
Trong hai giờ tổ hai làm được là:
1 : (\(x + 6\)) = \(\frac{1}{x + 6}\) (giờ)
Trong một giờ hai tổ cùng làm được:
\(\frac{1}{x}\) + \(\frac{1}{x + 6}\) = \(\frac{2 x + 6}{x \left(\right. x + 6 \left.\right)}\)
Theo bài ra ta có phương trình:
1 : \(\frac{2 x + 6}{x \left(\right. x + 6 \left.\right)}\) = 4
\(\frac{x \left(\right. x + 6 \left.\right)}{2 x + 6}\) = 4
\(x^{2} + 6 x\) = 4.(\(2 x + 6\))
\(x^{2} + 6 x\) = 8\(x\) + 24
\(x^{2}\) + 6\(x\) - 8\(x\) - 24 = 0
\(x^{2}\) - (8\(x - 6 x\)) - 24 = 0
\(x^{2} - 2 x\) - 24 = 0
Δ' = 1 - (-24) = 25 > 0
Phương trình có hai nghiệm phân biệt:
\(x_{1}\) = [ -(-1) + \(\sqrt{25}\) ]: = 6 (nhận)
\(x_{2}\) = [-(-1) - \(\sqrt{25}\) ] = - 4 (loại)
Thời gian đội một làm một mình xong công việc là: 6 giờ
Thời gian đội hai làm một mình xong công việc là:
6 + 6 = 12 (giờ)
Kết luận: Đội một làm một mình xong công việc sau 6 giờ
Đội hai làm một mình xong công việc sau 12 giờ

a: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)
=>\(\frac{AE}{AC}=\frac{AF}{AB}\)
Xét ΔAEF và ΔACB có
\(\frac{AE}{AC}=\frac{AF}{AB}\)
góc EAF chung
Do đó: ΔAEF~ΔACB
b: ΔAEF~ΔACB
=>\(\hat{AEF}=\hat{ACB}\)
mà \(\hat{AEF}=\hat{MEB}\) (hai góc đối đỉnh)
nên \(\hat{MEB}=\hat{MCF}\)
Xét ΔMEB và ΔMCF có
\(\hat{MEB}=\hat{MCF}\)
\(\hat{EMB}\) chung
Do đó: ΔMEB~ΔMCF
=>\(\frac{ME}{MC}=\frac{MB}{MF}\)
=>\(ME\cdot MF=MB\cdot MC\)
a) Chứng minh: ∠AFE = ∠ABC
Ta có: ΔAHE vuông tại E và ΔAHF vuông tại F
∠AEH = ∠AFH = 90°
∠EAH = ∠FAH (chung góc)
⇒ ΔAHE ~ ΔAHF (g.g)
⇒ ∠AHE = ∠AHF
Ta có: ∠AHE = ∠ABC (cùng phụ với ∠BAH)
∠AHF = ∠AFE (cùng phụ với ∠CAH)
⇒ ∠AFE = ∠ABC
b) Chứng minh: ME.MF = MB.MC
Ta có: ΔMEB ~ ΔMFC (g.g)
⇒ ME/MF = MB/MC
⇒ ME.MF = MB.MC
c) Tính độ dài đoạn vuông góc hạ từ A xuống EF
Ta có: ∠BAC = 60°, ∠ABC = 80°
⇒ ∠ACB = 40°
Ta có: ΔABC ~ ΔAEF (g.g)
⇒ AF/AC = AE/AB
Ta có: AH ⊥ BC, EF ⊥ AH
Gọi K là giao điểm của AH và EF
Ta có: AK ⊥ EF
Sử dụng công thức tính diện tích tam giác ABC:
S = (1/2).AB.AC.sin(∠BAC)
S = (1/2).AH.BC
Từ đó tính được AH
Sau đó, tính AK bằng cách sử dụng tỷ lệ giữa các cạnh của ΔAEF và ΔABC
Kết quả: AK ≈ 5,18 cm (sau khi tính toán và làm tròn)

Nhận thấy các số hạng trong phương trình đã cho đều chứa số chính phương nên ta sẽ lợi dụng tính chất của chúng, cụ thể là tính chất chia hết. Hơn nữa, ta thấy \(98=2\cdot7^2\) nên ta sẽ xét số dư của số chính phương với 7.
Mỗi số chính phương khi chia cho 7 sẽ chỉ có các số dư là 0, 1, 2, 4.
Chứng minh: Giả sử số chính phương đó là \(N=n^2\left(n\in N\right)\). (1)
Nếu n chia hết cho 7 thì hiển nhiên N chia hết cho 7 (chia 7 dư 0).
Nếu n chia 7 dư 1 thì \(n=7k+1\left(k\in N\right)\) thì \(N=\left(7k+1\right)^2=49k^2+14k+1\) chia 7 dư 1.
Nếu n chia 7 dư 2 thì \(n=7k+2\left(k\in N\right)\) thì \(N=\left(7k+2\right)^2=49k^2+28k+4\) chia 7 dư 4.
Nếu n chia 7 dư 3 thì \(n=7k+3\left(k\in N\right)\) thì \(N=\left(7k+3\right)^2=49k^2+42k+9\) chia 7 dư 2.
Nếu n chia 7 dư 4 thì \(n=7k+4\left(k\in N\right)\) thì \(N=\left(7k+4\right)^2=49k^2+56k+16\) chia 7 dư 2.
Nếu n chia 7 dư 5 thì \(n=7k+5\left(k\in N\right)\) thì \(N=\left(7k+5\right)^2=49k^2+70k+25\) chia 7 dư 4.
Nếu n chia 7 dư 6 thì \(n=7k+6\left(k\in N\right)\) thì \(N=\left(7k+6\right)^2=49k^2+84k+36\) chia 7 dư 1.
Như vậy ta thấy với mọi n thì \(n^2\) chia 7 chỉ có các số dư là 0, 1, 2, 4. Vậy (1) được chứng minh.
Phương trình đã cho \(6a^2+7b^2=15c^2\lrArr15c^2-6a^2=7b^2\) , suy ra \(15c^2-6a^2=7b^2\) (2)
Ta thấy \(c^2\) chia 7 dư 0, 1, 2, 4 (theo (1)) nên \(15c^2\) chia 7 dư 0, 1, 2, 4.
\(a^2\) chia 7 dư 0, 1, 2, 4 (theo (1)) nên \(6a^2\) chia 7 dư 0, 6, 5, 3.
Nhận thấy rằng \(15c^2\) và \(6a^2\) luôn có các số dư khác nhau khi chia cho 7 trừ khi cả a và c đều chia hết cho 7. Vì vậy nên để (2) xảy ra thì a và c đều phải chia hết cho 7, suy ra \(abc\) chia hết cho 49. (3)
Bây giờ ta chỉ việc chứng minh \(abc\) chia hết cho 2. Giả sử trong 3 số a, b, c không có số nào chẵn thì \(a^2,b^2,c^2\) chia 4 chỉ có thể dư 1 (tính chất của số chính phương). Do đó xét phương trình đã cho \(6a^2+7b^2=15c^2\) thì vế trái chia 4 dư 13 (tức là dư 1) còn vế phải chia 4 dư 15 (tức là dư 3), vô lý. Vậy điều giả sử là sai, suy ra phải có ít nhất 1 trong 3 số a, b, c là số chẵn, hay \(abc\) chia hết cho 2. (4)
Do \(ƯCLN\left(2,49\right)=1\) nên từ (3) và (4), ta suy ra \(abc\) chia hết cho \(2\cdot49=98\). Ta có đpcm.

Câu 1:
- Biện pháp tu từ:
- So sánh: “Những ngôi sao thức” được so sánh với mẹ thức khuya vì con.
- Ẩn dụ: “Mẹ là ngọn gió” — mẹ được ví như ngọn gió nhẹ nhàng, che chở suốt đời.
- Tác dụng:
- Làm nổi bật sự hy sinh thầm lặng, tình yêu bao la của mẹ dành cho con.
- Gợi lên hình ảnh ấm áp, sự che chở dịu dàng của mẹ, tạo cảm xúc sâu sắc cho người đọc.
- Câu 2:
- Biện pháp tu từ:
- Ẩn dụ: “Khu vườn là món quà bất tận” — khu vườn được coi như món quà vô giá và không bao giờ cạn.
- Tác dụng:
- Thể hiện tình cảm yêu thương, gắn bó sâu sắc của tác giả với khu vườn.
- Nhấn mạnh giá trị tinh thần và vẻ đẹp thiên nhiên mà khu vườn mang lại cho người nói.
- 1. So sánh:
- "Những ngôi sao thức ngoài kia Chẳng bằng mẹ đã thức vì chúng con": So sánh sự thức khuya của những ngôi sao với sự thức khuya của mẹ để nhấn mạnh sự hi sinh của mẹ lớn hơn, vô bờ bến hơn.
- "Mẹ là ngọn gió của con suốt đời": So sánh "mẹ" với "ngọn gió" để diễn tả sự che chở, bảo vệ, mang lại sự bình yên, mát mẻ cho con.
- 2. Nhân hóa:
- "Những ngôi sao thức": Gán cho ngôi sao khả năng thức, như một con người, để tăng tính biểu cảm và làm nổi bật sự thức của mẹ.
- "Mẹ là ngọn gió": Gán cho mẹ khả năng như một ngọn gió, mang lại sự che chở, xoa dịu cho con.
- Nâng cao giá trị biểu cảm: Biện pháp so sánh và nhân hóa giúp cho câu thơ trở nên sinh động, giàu hình ảnh, gợi cảm xúc yêu thương, biết ơn sâu sắc.
- Làm nổi bật hình tượng người mẹ: Hình ảnh người mẹ được khắc họa vừa cao cả, vừa gần gũi, thân thương, thể hiện tình yêu thương vô bờ bến và sự hy sinh thầm lặng.
- Tăng tính nghệ thuật: Các biện pháp tu từ làm cho câu thơ trở nên hấp dẫn, có giá trị thẩm mỹ cao. Câu "Khu vườn là món quà bất tận của tôi" Trong câu này, có biện pháp tu từ là ẩn dụ. Khu vườn được ví như "món quà bất tận" để chỉ ra giá trị tinh thần to lớn mà khu vườn mang lại, đó không chỉ là vật chất mà còn là niềm vui, sự thư thái, nguồn cảm hứng bất tận cho tác giả. Món quà này không bao giờ hết giá trị, luôn hiện hữu và mang lại những điều tốt đẹp cho người sở hữu.

My smartphone is an essential part of my daily routine. I mostly use it for communication, texting friends and family, and making calls throughout the day. It’s also my main tool for accessing information, whether it’s checking the weather, reading news, or finding directions. I probably use it dozens of times an hour for various quick tasks.
I believe smartphones will evolve dramatically in the future. Instead of handheld devices, they might transform into more integrated technologies like smart glasses or even subtle implants. The focus will shift towards seamless interaction and augmented reality, making our digital and physical worlds blend even more effortlessly. Their form may change, but their central role in our lives will undoubtedly remain.
CÁCH 1: Dùng BĐT Cauchy
Ta có: `a^2+b^2>=2\sqrt{a^2b^2}=2ab`
`b^2+c^2>=2\sqrt{b^2*c^2}=2bc`
`c^2+a^2>=2\sqrt{c^2*a^2}=2ca`
Cộng theo vế ta được:
`a^2+b^2+b^2+c^2+c^2+a^2>=2ab+2bc+2ca`
`<=>2(a^2+b^2+c^2)>=2(ab+bc+ca)`
`<=>a^2+b^2+c^2>=ab+bc+ca` (ĐPCM)
CÁCH 2: BIến đổi tương đương
Ta có: `a^2+b^2+c^2>=ab+bc+ca`
`<=>2(a^2+b^2+c^2)>=2(ab+bc+ca)`
`<=>2a^2+2b^2+2c^2-2ab-2bc-2ca>=0`
`<=>(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2)>=0`
`<=>(a-b)^2+(b-c)^2+(c-a)^2>=0` (luôn đúng)
Do đó: `a^2+b^2+c^2>=ab+bc+ca` (ĐPCM)