Từ các chứ số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên gồm 8 chữ số sao cho mỗi chữ số có mặt ít nhất một lần và các chữ số chẵn không đứng cạnh nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không gian mẫu: \(9.9.9.9.9=9^5\)
Chọn 3 chữ số từ 9 chữ số {1;2;...;9} có \(C_9^3\) cách
TH1: 1 chữ số lặp 3 lần, 2 chữ số có mặt 1 lần
Chọn 3 vị trí cho chữ số lặp 3 lần: \(C_5^3\) cách
Chọn 2 vị trí còn lại cho 2 chữ số kia: \(2!\) cách
TH2: 2 chữ số lặp 2 lần, 1 chữ số có mặt 1 lần
Chọn vị trí cho các chữ số lặp 2 lần: \(C_5^2.C_3^2\) cách
Còn lại 1 vị trí, có đúng 1 cách chọn cho chữ số còn lại
\(\Rightarrow C_9^3.\left(C_5^3.2!+C_5^3.C_3^2.1\right)\) số thỏa mãn
Xác suất: \(P=\dfrac{C_9^3.\left(C_5^3.2!+C_5^2.C_3^2.1\right)}{9^5}=\dfrac{1400}{19683}\)
Các bộ số có tổng bằng 10 là: (1;4;5);(2;3;5);(1;2;3;4)
\(\Rightarrow\) Có \(3!+3!+4!=36\) số có tổng bằng 10
Không gian mẫu: \(A_5^2+A_5^3+A_5^4+A_5^5=320\)
Xác suấtL \(P=\dfrac{36}{320}=\dfrac{9}{80}\)
số cách chọn là
12C4 - 5C1.4C1.3C2 - 5C1.4C2.3C1- 5C2.4C1.3C1
TK:
Để khai triển biểu thức \((x - 5)^4\), ta có thể sử dụng công thức khai triển Newton hoặc sử dụng quy tắc nhị thức của Pascal. Tuy nhiên, trong trường hợp này, để đơn giản, chúng ta có thể sử dụng quy tắc nhị thức để thực hiện khai triển:
Bằng quy tắc nhị thức, ta có:
\[(x - 5)^4 = \binom{4}{0}x^4(-5)^0 + \binom{4}{1}x^3(-5)^1 + \binom{4}{2}x^2(-5)^2 + \binom{4}{3}x^1(-5)^3 + \binom{4}{4}x^0(-5)^4\]
\(= x^4 + \binom{4}{1}x^3(-5) + \binom{4}{2}x^2(25) + \binom{4}{3}x(-125) + (-5)^4\)
\(= x^4 - 20x^3 + 100x^2 - 500x + 625\)
Vậy kết quả của khai triển biểu thức \((x - 5)^4\) là \(x^4 - 20x^3 + 100x^2 - 500x + 625\).
Từ đề bài ta suy ra trong 7 chữ số có đúng 1 chữ số có mặt 2 lần, 6 chữ số còn lại có mặt đúng 1 lần
Không gian mẫu: \(7.C_8^2.6!=141120\) số
TH1: chữ số có mặt 2 lần là chữ số lẻ.
Chọn chữ số lẻ lặp 2 lần có: 4 cách
Xếp vị trí cho 4 chữ số lẻ (có 1 số lặp 2 lần): \(C_5^2.3!=60\) cách
5 chữ số lẻ tạo thành 6 khe trống, xếp 3 chữ số chẵn vào 6 khe trống: \(A_6^3\) cách
TH2: chữ số có mặt 2 lần là chữ số chẵn.
Chọn chữ số chẵn có mặt 2 lần: 3 cách
Xếp vị trí cho 4 chữ số lẻ: \(4!\) cách
4 chữ số lẻ tạo thành 5 khe trống, chọn 2 vị trí cho chữ số chẵn lặp 2 lần: \(C_5^2\) cách
Xếp 3 chữ số chẵn còn lại: \(3!\) cách
\(\Rightarrow4.60.A_6^3+3.4!.C_5^2.3!=33120\) số
Xác suất: \(\dfrac{33120}{141120}=\dfrac{23}{98}\)