K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x+2y+3x-3y=4\\x+y+2x-2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-y=4\\3x-y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5x-y-3x+y=4-5\\3x-y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-1\\y=3x-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=3x-5=-\dfrac{3}{2}-5=-\dfrac{13}{2}\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}\left(x+1\right)\left(y-1\right)=xy-1\\\left(x-3\right)\left(y+3\right)=xy-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}xy-x+y-1=xy-1\\xy+3x-3y-9=xy-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x+y=0\\3x-3y=-3+9=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=y\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0=2\left(vôlý\right)\\x=y\end{matrix}\right.\)

vậy: Hệ vô nghiệm

1 tháng 7 2024

a) 

\(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+2y+3x-3y=4\\x+y+2x-2y=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}5x-y=4\\3x-y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-1\\3x-y=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\-\dfrac{3}{2}-y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{3}{2}-5=-\dfrac{13}{2}\end{matrix}\right.\)

b) 

\(\left\{{}\begin{matrix}\left(x+1\right)\left(y-1\right)=xy-1\\\left(x-3\right)\left(y+3\right)=xy-3\end{matrix}\right. \Leftrightarrow\left\{{}\begin{matrix}xy-x+y-1=xy-1\\xy+3x-3y-9=xy-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-x+y=0\\3x-3y=6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-x+y=0\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-y=2\end{matrix}\right.\)

mà: 2 khác 0

=> Hpt vô nghiệm 

a: ĐKXĐ: \(x\ne0;y\ne0\)

Đặt \(\dfrac{1}{x}=a;\dfrac{1}{y}=b\)

Hệ phương trình sẽ trở thành: \(\left\{{}\begin{matrix}a-2b=-1\\2a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-2b=-1\\4a+2b=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a-2b+4a+2b=-1+6\\2a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=5\\b=3-2a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=1\\b=3-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=1\\\dfrac{1}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\left(nhận\right)\)

b: ĐKXĐ: \(\left\{{}\begin{matrix}x\ne y\\x\ne-\dfrac{y}{2}\end{matrix}\right.\)

Đặt \(\dfrac{1}{x-y}=a;\dfrac{1}{2x+y}=b\)

Hệ phương trình sẽ trở thành:

\(\left\{{}\begin{matrix}a+b=2\\3a-2b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+2b=4\\3a-2b=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2a+2b+3a-2b=4-2\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=2\\b=2-a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=\dfrac{2}{5}\\b=2-\dfrac{2}{5}=\dfrac{10}{5}-\dfrac{2}{5}=\dfrac{8}{5}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{1}{x-y}=\dfrac{2}{5}\\\dfrac{1}{2x+y}=\dfrac{8}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=\dfrac{5}{2}\\2x+y=\dfrac{5}{8}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-y+2x+y=\dfrac{5}{2}+\dfrac{5}{8}\\x-y=\dfrac{5}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=\dfrac{25}{8}\\y=x-\dfrac{5}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{25}{8}:3=\dfrac{25}{24}\\y=\dfrac{25}{24}-\dfrac{5}{2}=\dfrac{25}{24}-\dfrac{60}{24}=-\dfrac{35}{24}\end{matrix}\right.\left(nhận\right)\)

c: ĐKXĐ: \(x\ne1;y\ne-3\)

Đặt \(\dfrac{x}{x-1}=a;\dfrac{1}{y+3}=b\)

Hệ phương trình sẽ trở thành:

\(\left\{{}\begin{matrix}3a-2b=3\\4a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a-2b=3\\8a+2b=10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3a-2b+8a+2b=13\\4a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}11a=13\\b=5-4a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{13}{11}\\b=5-4\cdot\dfrac{13}{11}=\dfrac{55}{11}-\dfrac{52}{11}=\dfrac{3}{11}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{x}{x-1}=\dfrac{13}{11}\\\dfrac{1}{y+3}=\dfrac{3}{11}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13\left(x-1\right)=11x\\y+3=\dfrac{11}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13x-13=11x\\y=\dfrac{11}{3}-3=\dfrac{2}{3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{13}{2}\\y=\dfrac{2}{3}\end{matrix}\right.\left(nhận\right)\)

Bài 3:

a: \(\left\{{}\begin{matrix}\dfrac{x+y}{2}=\dfrac{x-y}{4}\\\dfrac{x}{3}=\dfrac{y}{5}+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)=x-y\\\dfrac{5x}{15}=\dfrac{3y}{15}+\dfrac{15}{15}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x+2y=x-y\\5x=3y+15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3y=0\\5x-3y=15\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+3y+5x-3y=0+15\\x=-3y\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6x=15\\x=-3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{15}{6}=\dfrac{5}{2}\\y=\dfrac{x}{-3}=\dfrac{5}{2}:\left(-3\right)=-\dfrac{5}{6}\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}\left(x-1\right)\left(y+3\right)=xy+27\\\left(x-2\right)\left(y+1\right)=xy+8\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}xy+3x-y-3=xy+27\\xy+x-2y-2=xy+8\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x-y=30\\x-2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-2y=60\\x-2y=10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6x-2y-x+2y=60-10\\x-2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=50\\2y=x-10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=10\\2y=10-10=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=0\end{matrix}\right.\)

1 tháng 7 2024

Giúp mấy bài còn lại giùm mình với ạ

a: \(\left\{{}\begin{matrix}x-3y=4\\2x+3y=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3y+2x+3y=4+17\\x-3y=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x=21\\3y=x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\3y=7-4=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}2x+5y=8\\2x-7y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+5y-2x+7y=8-0\\2x=7y\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}12y=8\\x=\dfrac{7}{2}y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{8}{12}=\dfrac{2}{3}\\x=\dfrac{7}{2}\cdot\dfrac{2}{3}=\dfrac{7}{3}\end{matrix}\right.\)

c: \(\left\{{}\begin{matrix}3x+5y=14\\-4x+3y=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12x+20y=56\\-12x+9y=60\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}12x+20y-12x+9y=56+60\\3x+5y=14\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}29y=116\\3x=14-5y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\3x=14-5\cdot4=14-20=-6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=4\\x=-2\end{matrix}\right.\)

a: \(\left\{{}\begin{matrix}x-y=2\\3x+4y=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\3\left(y+2\right)+4y=20\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=y+2\\3y+6+4y=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=14\\x=y+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2\\x=y+2=2+2=4\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}4x-2y=1\\-2x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-2y=1\\y=2x\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x\\4x-2\cdot2x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2x\\0x=1\left(vôlý\right)\end{matrix}\right.\)

vậy: Hệ vô nghiệm

c: \(\left\{{}\begin{matrix}\dfrac{x}{3}+\dfrac{y}{4}=4\\x+y-14=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+3y=48\\x+y=14\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=14-y\\4\left(14-y\right)+3y=48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=14-y\\56-4y+3y=48\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}56-y=48\\x=14-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=56-48=8\\x=14-8=6\end{matrix}\right.\)

a: Thay x=2 và y=0 vào -2x+5y=7, ta được:

\(-2\cdot2+5\cdot0=7\)

=>-4+0=7(vô lý)

=>Loại

Thay x=-1 và y=1 vào -2x+5y=7, ta được:

\(-2\cdot\left(-1\right)+5\cdot1=7\)

=>2+5=7

=>7=7(nhận)

=>Nhận

Thay x=-1 và y=6 vào -2x+5y=7, ta được:

\(\left(-2\right)\cdot\left(-1\right)+5\cdot6=7\)

=>2+30=7

=>32=7(loại)

=>Loại

Thay x=4 và y=3 vào -2x+5y=7, ta được:

\(-2\cdot4+5\cdot3=7\)

=>-8+15=7

=>7=7(đúng)

=>Nhận

Thay x=-2 và y=-5 vào -2x+5y=7, ta được:

\(-2\cdot\left(-2\right)+5\cdot\left(-5\right)=7\)

=>4-25=7

=>-21=7(sai)

=>Loại

Thay x=2 và y=0 vào 4x-3y=7, ta được:

\(4\cdot2-3\cdot0=7\)

=>8=7(sai)

=>Loại

Thay x=-1 và y=1 vào 4x-3y=7, ta được:

\(4\cdot\left(-1\right)-3\cdot1=7\)

=>-7=7(sai)

=>Loại

Thay x=-1 và y=6 vào 4x-3y=7, ta được:

\(4\cdot\left(-1\right)-3\cdot6=7\)

=>-4-18=7

=>-22=7(sai)

=>Loại

Thay x=4 và y=3 vào 4x-3y=7, ta được:

\(4\cdot4-3\cdot3=7\)

=>16-9=7(đúng)

=>Nhận

Thay x=-2 và y=-5 vào 4x-3y=7, ta được:

\(4\left(-2\right)-3\cdot\left(-5\right)=7\)

=>-8+15=7

=>7=7(đúng)

=>Nhận

Vậy: Các cặp số là nghiệm của (1) là (-1;1);(4;3)

Các cặp số là nghiệm của (2) là (-2;-5); (4;3)

b: Cặp số là nghiệm của của 2 phương trình (1),(2) là (4;3)

loading...

\(\left\{{}\begin{matrix}x-3y=-2\\2x+3y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-3y+2x+3y=-2+2\\x-3y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=0\\3y=x-\left(-2\right)=x+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=0\\3y=0+2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{2}{3}\end{matrix}\right.\)

Vậy: Cặp số (0;2/3) là nghiệm của hệ phương trình, còn hai cặp số (0;1); (4;5) không là nghiệm của hệ phương trình

6h40p=20/3 giờ

Gọi thời gian làm riêng hoàn thành công việc của người thứ nhất và người thứ hai lần lượt là a(giờ) và b(giờ)

(Điều kiện: a>0; b>0)

Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{a}\)(công việc)

Trong 1 giờ, người thứ hai làm được: \(\dfrac{1}{b}\)(công việc)

Trong 1 giờ, hai người làm được: \(1:\dfrac{20}{3}=\dfrac{3}{20}\)(công việc)

Do đó, ta có: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{20}\left(1\right)\)

Trong 5 giờ, người thứ nhất làm được: \(\dfrac{5}{a}\)(công việc)

Trong 8 giờ, người thứ hai làm được: \(\dfrac{8}{b}\)(công việc)

Nếu người thứ nhất làm trong 5 giờ, sau đó nghỉ và người thứ hai làm trong 8 giờ thì xong nên ta có: \(\dfrac{5}{a}+\dfrac{8}{b}=1\left(2\right)\)

Từ (1),(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{20}\\\dfrac{5}{a}+\dfrac{8}{b}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{a}+\dfrac{5}{b}=\dfrac{3}{4}\\\dfrac{5}{a}+\dfrac{8}{b}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{5}{a}+\dfrac{8}{b}-\dfrac{5}{a}-\dfrac{5}{b}=1-\dfrac{3}{4}\\\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{20}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{b}=\dfrac{1}{4}\\\dfrac{1}{a}=\dfrac{3}{20}-\dfrac{1}{b}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=12\\\dfrac{1}{a}=\dfrac{3}{20}-\dfrac{1}{12}=\dfrac{9}{60}-\dfrac{5}{60}=\dfrac{4}{60}=\dfrac{1}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=12\\a=15\end{matrix}\right.\left(nhận\right)\)

Vậy: thời gian làm riêng hoàn thành công việc của người thứ nhất và người thứ hai lần lượt là 15(giờ) và 12(giờ)

1 tháng 7 2024

Gọi thời gian nếu làm riêng của người thứ nhất, người thứ hai để hoàn thành công việc lần lượt là $a,b$ (giờ; $a,b>0$)

Mỗi giờ người thứ nhất làm được: $\frac1a$ (công việc)

Mỗi giờ người thứ hai làm được: $\frac1b$ (công việc)

Vì hai người cùng làm việc thì trong 6 giờ 40 phút (= $\frac{20}{3}$ giờ) thì xong công việc nên ta có phương trình: $\frac{20}{3}(\frac 1a+\frac1b)=1$

$\Leftrightarrow \frac1a+\frac1b=\frac{3}{20}$ (1)

Vì nếu người thứ nhất làm riêng trong 5 giờ rồi người thứ hai tiếp tục làm nốt trong 8 giờ thì xong công việc nên ta có phương trình: 

$\frac5a+\frac8b=1$ (2)

Từ (1) và (2) ta có hệ: $\begin{cases} \frac1a+\frac1b=\frac{3}{20} \\ \frac5a+\frac8b=1 \end{cases}$

Đặt $\frac 1a=u:\frac1b=v;(u,v>0)$

Khi đó hot trở thành: $\begin{cases} u+v=\frac{3}{20}\\ 5u+8v=1\end{cases} \Leftrightarrow \begin{cases} u=\frac{1}{15}\\v=\frac{1}{12}\end{cases}$

$\Rightarrow \begin{cases} \frac1a=\frac{1}{15}\\\frac1b=\frac{1}{12} \end{cases} \Rightarrow \begin{cases} a=15 (tm)\\b=12(tm) \end{cases}$

Vậy: ...

#$\mathtt{Toru}$