Tính nhanh
\(556^2-553.559\)
\(456^2+456.88+44^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-4x^3+4x^2+x-1\)
\(=-4x^2\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(1-4x^2\right)=\left(x-1\right)\left(1-2x\right)\left(1+2x\right)\)
\(-4x^3+4x^2+x-1\\ =-4x^2\left(x-1\right)+\left(x-1\right)\\ =\left(x-1\right)\left(1-4x^2\right)\\ =\left(x-1\right)\left[1^2-\left(2x\right)^2\right]\\ =\left(x-1\right)\left(1-2x\right)\left(1+2x\right)\)
1: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔADB=ΔAEC
=>AD=AE và BD=CE
Xét ΔABC có \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
nên DE//BC
Xét tứ giác BEDC có DE//BC
nên BEDC là hình thang
Hình thang BEDC có BD=CE
nên BEDC là hình thang cân
2: Ta có: \(\widehat{DAK}=\widehat{KAB}\)
mà \(\widehat{KAB}=\widehat{AKD}\)
nên \(\widehat{DAK}=\widehat{DKA}\)
=>DA=DK
Ta có: \(\widehat{CBK}=\widehat{ABK}\)
mà \(\widehat{ABK}=\widehat{BKC}\)
nên \(\widehat{CKB}=\widehat{CBK}\)
=>CB=CK
CD=AD+BC
=CK+DK
=>C,K,D thẳng hàng
Bài 2:
\(a.6x\left(2x-3y\right)+12xy^2\left(2x-3y\right)\\ =\left(2x-3y\right)\left(6x+12xy^2\right)\\ =6x\left(2x-3y\right)\left(2y^2+1\right)\\ b.14x^2y\left(6x+1\right)-21xy^2\left(6x+1\right)\\ =\left(6x+1\right)\left(14x^2y-21xy^2\right)\\ =7xy\left(6x+1\right)\left(2x-3y\right)\\ c.-3a\left(x-3\right)-a^2\left(3-x\right)\\ =-3a\left(x-3\right)+a^2\left(x-3\right)\\ =\left(x-3\right)\left(a^2-3a\right)\\ =a\left(x-3\right)\left(a-3\right)\\ d.4x^2y\left(7-2y\right)-24x^3y^2\left(2y-7\right)\\ =4x^2y\left(7-2y\right)+24x^3y^2\left(7-2y\right)\\ =\left(7-2y\right)\left(4x^2y+24x^3y^2\right)\\ =4x^2y\left(7-2y\right)\left(1+6xy\right)\\ e.4ab^2\left(x+2y\right)-16a^3y\left(-x-2y\right)\\ =4ab^2\left(x+2y\right)+16a^3y\left(x+2y\right)\\ =\left(x+2y\right)\left(4ab^2+16a^3y\right)\\ =4a\left(x+2y\right)\left(b^2+4a^2y\right)\)
Bài 3:
\(a.4x^2-12x=0\\ \Leftrightarrow4x\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}4x=0\\x-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\\ b.x^3-25x=0\\ \Leftrightarrow x\left(x^2-25\right)=0\\ \Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\\ c.\left(2x-1\right)^2-3x\left(x+2\right)=1\\ \Leftrightarrow4x^2-4x+1-3x^2-6x=1\\ \Leftrightarrow x^2-10x+1=1\\ \Leftrightarrow x^2-10x=0\\ \Leftrightarrow x\left(x-10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-10=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=10\end{matrix}\right.\\ d.7x\left(x-18\right)-x+18=0\\ \Leftrightarrow7x\left(x-18\right)-\left(x-18\right)=0\\ \Leftrightarrow\left(x-18\right)\left(7x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-18=0\\7x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=18\\7x=1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=18\\x=\dfrac{1}{7}\end{matrix}\right.\)
ΔABC vuông tại A nên ta có:
\(sinB=\dfrac{AC}{BC}\\ =>AC=BC\cdot sinB=8\cdot sin60^o=4\sqrt{3}\left(cm\right)\)
Áp dụng định lý Pythagore cho tam giác ABC ta có:
\(BC^2=AC^2+AB^2\\ =>AB=\sqrt{BC^2-AC^2}\\ =>AB=\sqrt{8^2-\left(4\sqrt{3}\right)^2}=4\left(cm\right)\)
\(3x^2-75=0\)
\(3\left(x^2-25\right)=0\)
\(x^2-25^2=0\)
\(\left(x-5\right)\left(x+5\right)=0\)
\(\left[{}\begin{matrix}x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
`556^2 - 553 . 559 `
`= 556^2 - (556 - 3) . (556 + 3) `
`= 556^2 - (556^2 - 3^2)`
`= 556^2 - 556^2 + 9`
`= 0 + 9`
= 9
`456^2 + 456 . 88 + 44^2`
`= 456^2 + 456 . 88 + 44^2`
`= 456^2 + 2 .456 . 4 + 44^2`
`= (456 + 44)^2`
`= 500^2`
`= 250000`
--------------------------------
Áp dụng các HDT sau nhé:
`(a+b)^2 = a^2 + 2ab + b^2`
`a^2 - b^2 = (a+b)(a-b)`