cmr nếu 1 đường thẳng cắt 2 đường thẳng mà trong các góc tạo thành có 1 cặp góc so le trong bằng nhau thì các cặp góc so le trong còn lại cũng bằng nhau
mn giúp mik với nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#3107.101107`
`1.`
Số hạng của tổng B:
`(99 - 1) \div 1 + 1 = 99` (số hạng)
Giá trị của tổng B:
`(99 + 1) \cdot 99 \div 2 = 4950`
Dấu âm đó là dấu âm của tử thôi bạn. Và vì mẫu số phải đáp ứng điều kiện là `<0` để là một phân số, nên nếu mẫu số có dấu âm sẽ được chuyển lên tử nhé! Nếu cả 2 đều chứa dấu âm thì phân số đó dương.
Ta có công thức luỹ thừa của một số hữu tỉ như sau:
(\(\dfrac{a}{b}\))m = \(\dfrac{a^m}{b^m}\) (a; b; m \(\in\) Z; b ≠ 0)
Áp dụng với ( \(\dfrac{-1}{2}\) )7 ta có a = -1; b = 2; m = 7
Khi đó: (\(\dfrac{-1}{2}\))7 = \(\dfrac{\left(-1\right)^7}{\left(2\right)^7}\) = \(\dfrac{-1}{128}\)
1:
a: \(\dfrac{1234}{1244}=1-\dfrac{10}{1244}\)
\(\dfrac{4321}{4331}=1-\dfrac{10}{4331}\)
1244<4331
=>\(\dfrac{10}{1244}>\dfrac{10}{4331}\)
=>\(-\dfrac{10}{1244}< -\dfrac{10}{4331}\)
=>\(-\dfrac{10}{1244}+1< -\dfrac{10}{4331}+1\)
=>\(\dfrac{1234}{1244}< \dfrac{4321}{4331}\)
=>\(-\dfrac{1234}{1244}>-\dfrac{4321}{4331}\)
2:
a: \(\dfrac{33}{131}>\dfrac{33}{132}=\dfrac{1}{4}\)
\(\dfrac{53}{217}< \dfrac{53}{212}=\dfrac{1}{4}\)
Do đó: \(\dfrac{33}{131}>\dfrac{53}{217}\)
=>\(-\dfrac{33}{131}< -\dfrac{53}{217}\)
b: \(\dfrac{22}{67}< \dfrac{22}{66}=\dfrac{1}{3}\)
\(\dfrac{51}{152}>\dfrac{51}{153}=\dfrac{1}{3}\)
Do đó: \(\dfrac{22}{67}< \dfrac{51}{152}\)
=>\(\dfrac{22}{-67}>\dfrac{51}{-152}\)
c: \(\dfrac{18}{91}< \dfrac{18}{90}=\dfrac{1}{5}\)
\(\dfrac{23}{114}>\dfrac{23}{115}=\dfrac{1}{5}\)
Do đó: \(\dfrac{18}{91}< \dfrac{23}{114}\)
=>\(-\dfrac{18}{91}>-\dfrac{23}{114}\)
Bài 4:
\(\left(x-\dfrac{2}{5}\right)^2>=0\forall x\)
\(\left(y+20\right)^{10}>=0\forall y\)
Do đó: \(\left(x-\dfrac{2}{5}\right)^2+\left(y+20\right)^{10}>=0\forall x,y\)
=>\(A=\left(x-\dfrac{2}{5}\right)^2+\left(y+20\right)^{10}+2010>=2010\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{2}{5}=0\\y+20=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-20\end{matrix}\right.\)
Bài 3:
\(\left(ad+bc\right)^2=4bacd\)
=>\(a^2d^2+b^2c^2+2adbc-4adbc=0\)
=>\(\left(ad\right)^2+\left(bc\right)^2-2adbc=0\)
=>(ad-bc)2=0
=>ad-bc=0
=>ad=bc
=>\(\dfrac{a}{b}=\dfrac{c}{d}\)
=>ĐPCM
Bài 2:
a: |2x-1|+3=15
=>|2x-1|=15-3=12
=>\(\left[{}\begin{matrix}2x-1=12\\2x-1=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{13}{2}\\x=-\dfrac{11}{2}\end{matrix}\right.\)
b: \(\left|x-3,2\right|+\left|2x-\dfrac{1}{5}\right|=x+3\)(1)
TH1: x<1/10
(1) sẽ trở thành \(\dfrac{1}{5}-2x+3,2-x=x+3\)
=>-3x+3,4=x+3
=>-4x=3-3,4=-0,4
=>x=0,1(loại)
TH2: 1/10<=x<3,2
(1) sẽ trở thành \(2x-\dfrac{1}{5}+3,2-x=x+3\)
=>x+3=x+3(luôn đúng)
TH3: x>=3,2
(1) sẽ trở thành \(x-3,2+2x-\dfrac{1}{5}=x+3\)
=>3x-3,4=x+3
=>2x=6,4
=>x=3,2(nhận)
Vậy: 1/10<=x<=3,2
Ta có:$\frac23< a-\frac16<\frac89$
$\Rightarrow \frac23+\frac16< a-\frac16+\frac16<\frac89+\frac16$
$\Rightarrow \frac56< a<\frac{19}{18}$
Mà a nguyên nên $a=1$
`#3107.101107`
`a)`
- Tổng của 2 số hữu tỉ khác dấu: \(-\dfrac{4}{15}=-\dfrac{13}{15}+\dfrac{9}{15}\)
`b)`
- Tích cảu 2 số hữu tỉ: \(-\dfrac{4}{15}=-\dfrac{8}{15}\cdot\dfrac{1}{2}\)
`c)`
Thương của 2 số hữu tỉ: \(-\dfrac{4}{15}=-\dfrac{16}{15}\div2\)
a) \(\dfrac{2x+1}{9}=\dfrac{5}{x+1}\left(x\ne-1\right)\)
\(\Rightarrow\left(2x+1\right)\left(x+1\right)=9\cdot5=45\)
\(\Rightarrow2x^2+2x+x+1=45\)
\(\Rightarrow2x^2+3x-44=0\)
\(\Rightarrow2x^2+11x-8x-44=0\)
\(\Rightarrow x\left(2x+11\right)-4\left(2x+11\right)=0\)
\(\Rightarrow\left(x-4\right)\left(2x+11\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\2x=-11\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{11}{2}\end{matrix}\right.\)
b) \(\dfrac{2x-1}{21}=\dfrac{3}{2x+1}\left(x\ne-\dfrac{1}{2}\right)\)
\(\Rightarrow\left(2x-1\right)\left(2x+1\right)=21\cdot3=63\)
\(\Rightarrow4x^2-1=63\)
\(\Rightarrow4x^2=64\)
\(\Rightarrow\left(2x\right)^2=8^2\)
\(\Rightarrow\left[{}\begin{matrix}2x=8\\2x=-8\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
c) \(\dfrac{2x-1}{2}=\dfrac{5}{x}\left(x\ne0\right)\)
\(\Rightarrow x\left(2x-1\right)=5\cdot2=10\)
\(\Rightarrow2x^2-x=10\)
\(\Rightarrow2x^2-x-10=0\)
\(\Rightarrow2x^2+4x-5x-10=0\)
\(\Rightarrow2x\left(x+2\right)-5\left(x+2\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=5\\x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-2\end{matrix}\right.\)
d) \(\dfrac{x-3}{3}=\dfrac{2x+1}{5}\)
\(\Rightarrow15\cdot\dfrac{x-3}{3}=15\cdot\dfrac{2x+1}{5}\)
\(\Rightarrow5\left(x-3\right)=3\left(2x+1\right)\)
\(\Rightarrow5x-15=6x+3\)
\(\Rightarrow6x-5x=-18\)
\(\Rightarrow x=-18\)
Bài 1:
\(\dfrac{a}{b}-\dfrac{a+2009}{b+2009}=\dfrac{a\left(b+2009\right)-b\left(a+2009\right)}{b\left(b+2009\right)}\)
\(=\dfrac{2009a-2009b}{b\left(b+2009\right)}=\dfrac{2009\left(a-b\right)}{b\left(b+2009\right)}\)
Vì a>b>0 nên a-b>0; b>0; b+2009>0
=>\(\dfrac{2009\left(a-b\right)}{b\left(b+2009\right)}>0\)
=>\(\dfrac{a}{b}>\dfrac{a+2009}{b+2009}\)
Ta có: \(\widehat{A_1}=\widehat{B_2}\) (theo giả thiết)
Mặt khác:
\(\left\{{}\begin{matrix}\widehat{A_1}+\widehat{A_2}=180^o\\\widehat{B_1}+\widehat{B_2}=180^o\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{A_1}=180^o-\widehat{A_2}\\\widehat{B_2}=180^o-\widehat{B_1}\end{matrix}\right.\) (hai cặp góc kề bù)
Mà \(\widehat{A_1}=\widehat{B_2}\) nên:
\(\widehat{A_2}=\widehat{B_1}\) Vậy nếu 1 đường thẳng cắt 2 đường thẳng mà trong các góc tạo thành có 1 cặp góc so le trong bằng nhau thì các cặp góc so le trong còn lại cũng bằng nhau.
Giả sử \(\widehat{A_1}\) và \(\widehat{B_2}\) là cặp góc so le trong đề bài cho.
Ta có: \(\widehat{A_1}=\widehat{B_2}\) (theo giả thiết)
Mặt khác:
\(\left\{{}\begin{matrix}\widehat{A_1}+\widehat{A_2}=180^o\\\widehat{B_1}+\widehat{B_2}=180^o\end{matrix}\right.\)(hai cặp góc kề bù)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{A_1}=180^o-\widehat{A_2}\\\widehat{B_2}=180^o-\widehat{B_1}\end{matrix}\right.\)
Mà \(\widehat{A_1}=\widehat{B_2}\) nên:
\(\widehat{A_2}=\widehat{B_1}\) hay cặp góc so le trong còn lại bằng nhau
Vậy nếu 1 đường thẳng cắt 2 đường thẳng mà trong các góc tạo thành có 1 cặp góc so le trong bằng nhau thì cặp góc so le trong còn lại cũng bằng nhau.