Tìm giá trị lớn nhất của các biểu thức
a. A = 5 - 8x - x2
b. B = 5 - x2 + 2x - 4y2 - 4y
c. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c
d. Tìm a, b, c biết a2 - 2a + b2 + 4b + 4c2 - 4c + 6 = 0
giúp mình nha mọi người
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E M K H
a) Gọi H là giao điểm của DM và AC
Xét tam giác ADM có: AD=AM ( giả thiết)
=> Tam giác ADM cân tại A và có AH là đường cao
=> AH là đường trung tuyến của tam giác ADM
=> H là trung điểm DM
=> tam giác CDM có CH là đường cao đồng thời là đường trung tuyến
=> Tam giác DCM cân tại D
=> CD=CM
b) Xét tam giác ADC và tam giác AMC có:
CD=CM ( chứng minh trên)
AC chung
AD=AM ( giả thiết)
=> Tam giác ADC = tam giác AMC
=> \(\widehat{ADC}=\widehat{AMC}\)
mà \(\widehat{AMC}+\widehat{CMB}=180^o\)
=> \(\widehat{ADC}+\widehat{CMB}=180^o\) (1)
Xét tứ giác ABCD có góc A+góc C=180o
=> \(\widehat{ADC}+\widehat{ABC}=180^o\)(2)
Từ (1); (2)
=> \(\widehat{ABC}=\widehat{CMB}\Rightarrow\widehat{CBM}=\widehat{CMB}\)
=> Tam giác BCM cân tại C
=> CM =CB
mà theo câu a : CD=CM
=> CB=CD
=> Tam giác DCB cân tại C có K là trung điểm BD
=> CK vuông góc BD (3)
Mặt khác xét tam giác EBD đều có K là trung điểm BD
=> EK vuông góc với BD (4)
Từ (3), (4)
=> E, K, C thẳng hàng
Ta có: (a2+b2)(x2+y2)=(ax+by)2
\(\Leftrightarrow\)a2x2+a2y2+b2x2+b2y2=a2x2+2abxy+b2y2
\(\Leftrightarrow\)a2y2-2abxy+b2x2=0
\(\Leftrightarrow\)(ay-bx)2=0
\(\Leftrightarrow\)ay=bx
\(\Leftrightarrow\)\(\frac{a}{x}\)=\(\frac{b}{y}\)
#)Giải :
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Rightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2abxy+b^2y^2\)
\(\Rightarrow a^2y^2+b^2x^2=2abxy\)
\(\Rightarrow a^2y^2+b^2x^2-2abxy=0\)
\(\Rightarrow\left(ay-bx\right)^2=0\)
\(\Rightarrow ay-bx=0\)
\(\Rightarrow ay=bx\)
\(\Rightarrow\frac{a}{x}=\frac{b}{y}\)(theo tính chất tỉ lệ thức)
\(\Rightarrowđpcm\)
Bài 2: Rút gọn biểu thức sau một cách nhanh nhất:
a, A=(6x-2)2+(2-5x)2+2.(6x-2)(2-5x)
\(=\left(6x-2\right)^2+2\left(6x-2\right)\left(2-5x\right)+\left(2-5x\right)^2\)
\(\text{(Hằng đẳng thức số 2)}\)
\(=\left(6x-2+2-5x\right)\)
\(=x\)
\(B=\left(2a^2+2a+1\right)\left(2a^2-2a+1\right)-\left(2a^2+1\right)^2\)
\(=\left(2a^2+1+2a\right)\left(2a^2+1-2a\right)-\left(2a^2+1\right)^2\)
\(=\left(2a^2+1\right)^2-4a^2-\left(2a^2+1\right)^2\)
\(=-4a^2\)
\(2x^2+y^2+2xy-4x+9=\left(x^2-4x+4\right)+\left(x^2+2xy+y^2\right)+5\)
\(=\left(x+y\right)^2+\left(x-4\right)^2+5\ge5\)
Suy ra dieu phai cm
\(2x^2+y^2+2xy-4x+9\)
\(=x^2+2xy+y^2+x^2-4x+4+5\)
\(=\left(x+y\right)^2+x^2-2.2.x+4+5\)
\(=\left(x+y\right)^2+\left(x-2\right)^2+5\)
\(\left(x+y\right)^2>0;\left(x-2\right)^2>0;5>0\)
\(\Rightarrow\left(x+y\right)^2+\left(x-2\right)^2+5>0\)
\(\Rightarrow2x^2+y^2+2xy-4x+9>0\)
Ta có:
P= (x+1)(x+3)(x+5)(x+7)+15
=((x+1)(x+7))((x+3)(x+5))+15
=(x^2+8x+7)(x^2+8x+15)+15
Đặt t=x^2+8x+11, ta có:
P=(t-4)(t+4)+15
P=t^2-16+15
P=t^2-1=(t-1)(t+1)
Vậy: P=(x^2+8x+10)(x^2+8x+12)
=(x^2+8x+10)(x+6)(x+2)
\(f\left(x-1\right)=\left(x-1\right)\left(x\right)\left(x+1\right)\left(ax-a+b\right)\)
=> \(f\left(x\right)-f\left(x-1\right)=x\left(x+1\right)\left(2x+1\right)\)mọi x
\(\Leftrightarrow x\left(x+1\right)\left(x+2\right)\left(ax+b\right)-\left(x-1\right)x\left(x+1\right)\left(ax-a+b\right)=x\left(x+1\right)\left(2x+1\right)\)mọi x
\(\Leftrightarrow x\left(x+1\right)\left[\left(x+2\right)\left(ax+b\right)-\left(x-1\right)\left(ax-a+b\right)\right]=x\left(x+1\right)\left(2x+1\right)\)mọi x
\(\Leftrightarrow ax^2+2ax+bx+2b-ax^2+ax-bx+ax-a+b=2x+1\)mọi x
\(\Leftrightarrow4ax+3b-a=2x+1\)
Cân bằng hệ số :
\(\hept{\begin{cases}4a=2\\3b-a=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=\frac{1}{2}\end{cases}}\)
a) Ta có $$\begin{aligned} f(x)-f(x-1) & =x(x+1)(x+2)(ax+b)-(x-1)x(x+1)(ax+b) \\ & = 4ax^3+3(a+b)x^2+(3b-a)x \end{aligned}$$
Và $x(x+1)(2x+1)=2x^3+3x^2+x$
Vậy $$4ax^3+3(a+b)x^2+(3b-a)x = 2x^3+3x^2+x \iff \begin{cases} 4a=2 \\ 3(a+b)=3 \\ 3b-a=1 \end{cases} \implies a=b= \dfrac{1}{2}$$
b) Ta có
$$\begin{array}{l}1.2.3= f(1)-f(0) \\ 2.3.5=f(2)-f(1) \\ 3.4.7= f(3)-f(2) \\ ... \\ n(n+1)(2n+1)=f(n)-f(n-1) \end{array}$$
$$\implies S=1.2.3+2.3.5+.....+n(n+1)(2n+1)= f(n-1)-f(0)= \boxed{\dfrac{(n-1)n(n+1)^2}{2}}$$
\(\left(a+b+c+d\right)^2=\left(\left(a+b\right)+\left(c+d\right)\right)^2\)
\(=\left(a+b\right)^2+2\left(a+b\right)\left(c+d\right)+\left(c+d\right)^2\)
\(=a^2+b^2+c^2+d^2+2ab+2cd+2ac+2ad+2bc+2bd\)
Câu dưới em làm tương tự
Bài 1:
a) \(M=x^2+x+1\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4};\forall x\)
Hay \(M\ge\frac{3}{4};\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(MIN\)\(M=\frac{3}{4}\)\(\Leftrightarrow x=\frac{-1}{2}\)
b) \(N=3-2x-x^2\)
\(=-x^2-2x+3\)
\(=-\left(x^2+2x+1\right)+4\)
\(=-\left(x+1\right)^2+4\)
Vì \(-\left(x+1\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x+1\right)^2+4\le0+4;\forall x\)
Hay \(N\le4;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy MAX \(N=4\)\(\Leftrightarrow x=-1\)
Bài 2:
Vì a chia 3 dư 1 nên a có dạng \(3k+1\left(k\in N\right)\)
Vì b chia 3 dư 2 nên b có dạng \(3t+2\left(t\in N\right)\)
Ta có: \(ab=\left(3k+1\right)\left(3t+2\right)\)
\(=\left(3k+1\right).3t+\left(3k+1\right).2\)
\(=9kt+3t+6k+2\)
\(=3.\left(3kt+t+2k\right)+2\)chia 3 dư 2 .
\(\)
1a) Ta có: M = x2 + x + 1 = (x2 + x + 1/4) + 3/4 = (x + 1/2)2 + 3/4
Ta luôn có: (x + 1/2)2 \(\ge\)0 \(\forall\)x
=> (x + 1/2)2 + 3/4 \(\ge\)3/4 \(\forall\)x
Dấu "=" xảy ra khi : x + 1/2 = 0 <=> x = -1/2
Vậy Mmin = 3/4 tại x = -1/2
b) Ta có: N = 3 - 2x - x2 = -(x2 + 2x + 1) + 4 = -(x + 1)2 + 4
Ta luôn có: -(x + 1)2 \(\le\)0 \(\forall\)x
=> -(x + 1)2 + 4 \(\le\)4 \(\forall\)x
Dấu "=" xảy ra khi : x + 1 = 0 <=> x = -1
Vậy Nmax = 4 tại x = -1
a) \(A=5-8x-x^2\)
\(=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+2.x.4+4^2-16-5\right)\)
\(=-\left[\left(x+4\right)^2-21\right]\)
\(=-\left(x+4\right)^2+21\le21\)
Dấu "=" khi x + 4 = 0 => x = -4
Vậy GTLN của A là 21 khi x = -4
b) \(B=5-x^2+2x-4y^2-4y\)
\(=-\left(x^2-2x+4y^2+4y-5\right)\)
\(=-\left[x^2-2x+1+\left(2y\right)^2+2.2y.1+1-7\right]\)
\(=-\left[\left(x-1\right)^2+\left(2y+1\right)^2\right]+7\le7\)
Dấu "=" khi \(\hept{\begin{cases}x-1=0\\2y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}}\)
Vậy GTLN của B là 7 khi x = 1 và y = -1/2
c) Theo đề: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)(ĐPCM)
d) \(a^2-2a+b^2+4b+4c^2-4c+6=0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(\text{4c^2}-4c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}a-1=0\\b+2=0\\2c-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-2\\c=\frac{1}{2}\end{cases}}}\)
Vậy nghiệm phương trình: a = 1; b = -2; c = 1/2
Chúc bạn học tốt ^_^
sao ko ai giúp nhỉ ;(