cho 2 số a và b thỏa mãn đẳng thức a^3 + b^3 + 3(a^2 + b^2) + 4(a+b) +4 = 0
tính giá trị của biểu thức M = 2019(a+b)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{x+1}+3^x=108\)
\(\Rightarrow3^x\left(1+3\right)=108\)
\(\Rightarrow3^x.4=108\)
\(\Rightarrow3^x=108:4\)
\(\Rightarrow3^x=27\)
\(27=3^3\)
\(3^x=3^3\)
\(\Rightarrow x=3\)
Vậy x = 3
3\(^{x+1}\)+ 3\(^x\)=108
3\(^x\).3 + 3\(^x\)= 108
3\(^x\)( 3 + 1 ) = 108
3\(^x\). 4 = 108
3\(^x\)= 27 = 3\(^3\)
x = 3
Ở link: Câu hỏi của Thị Kim Vĩnh Bùi - Toán lớp 8 - Học toán với OnlineMath
đã tìm được giá trị của a, b, c, d
Thay vào tìm M nhé!
Hướng dẫn:
a) Có: \(\Delta\)ABC vuông tại A và ^ACB = 40\(^o\)
=> ^ABC = 90\(^o\)- 40\(^o\)=50\(^o\)
b ) Xét \(\Delta\)AMB và \(\Delta\)EMC có: AM = ME ; BM = MC ( gt ) ; ^AMB = ^EMC ( đối đỉnh )
=> \(\Delta\)AMB = \(\Delta\)EMC
=> ^ABM = ^ECM => ^ABC = ^BCE => AB //EC
c) \(\Delta\)ABC vuông tại A có AM là trung tuyến
=> AM = BM= CM =ME
=> \(\Delta\)MEC cân tại M => ^MEC =^ MCE mà ^MEC = ^ECK ( so le trong ) và ^KEC + ^ECK = 90\(^o\)
=> ^^MCE + ^KEC = 90\(^o\)
Ta lại có: AB //EC => ^ECA = 90 \(^o\)=> ^BCA +^ BCE = 90\(^o\)=> ^BCA + ^MCE = 90\(^o\)
=> ^BCA = ^KEC
Em đặt : \(x^2+x-2=t\)
=> \(x^2+x-3=x^2+x-2-1=t-1\)
Ta có phương trình ẩn t
\(t\left(t-1\right)=12\)
<=> \(t^2-t-12=0\)
<=> \(t^2-4t+3t-12=0\)
<=> \(\left(t+3\right)\left(t-4\right)=0\)
<=> t = - 3 hoặc t = 4
Với t = - 3 ta có: \(x^2+x-2=-3\)
Em làm tiếp nhé!
Gọi các cạnh tương ứng với các đường cao 3 cm; 4cm; 6 cm là a, b, c ( >0; cm )
Ta có: Diện tích của tam giác là:
\(\frac{1}{2}.3.a=\frac{1}{2}.4.b=\frac{1}{2}.6.c\)
=> \(3a=4b=6c\)
=> \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\)
Độ dài đường cao tỉ lệ nghịch với độ dài cạnh đáy tương ứng => a là cạnh dài nhất
=> b + c - a = 1
Áp dụng dãy tỉ số bằng nhau ta có: \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{b+c-a}{\frac{1}{6}+\frac{1}{4}-\frac{1}{3}}=\frac{1}{\frac{1}{12}}=12\)
=> a = \(\frac{1}{3}.12=4\)cm
b = 3 cm
c = 2 cm
=> Chu vi tam giác là: a + b + c = 4 + 3 + 2 = 9 cm
Ta có: \(a^3+b^3+3\left(a^2+b^2\right)+4\left(a+b\right)+4=0\)
<=> \(\left(a+b\right)^3-3ab\left(a+b\right)+3\left(a+b\right)^2-6ab+4\left(a+b\right)+4=0\)
<=> \(\left[\left(a+b\right)^3+2\left(a+b\right)^2\right]-3ab\left(a+b+2\right)+\left(a+b\right)^2+4\left(a+b\right)+4=0\)
<=> \(\left(a+b\right)^2\left(a+b+2\right)-3ab\left(a+b+2\right)+\left(a+b+2\right)^2=0\)
<=> \(\left(a+b+2\right)\left(\left(a+b\right)^2-3ab+a+b+2\right)=0\)
<=> \(\left(a+b+2\right)\left(a^2+b^2-ab+a+b+2\right)=0\)(1)
Có: \(a^2+b^2-ab+a+b+2=\frac{1}{2}\left[\left(a-b\right)^2+\left(a+1\right)^2+\left(b+1\right)^2\right]+1>0\)
=> (1) <=> a + b + 2 = 0 <=> a + b = -2
Thế vào tìm M .
Cố gắng học tốt giúp đỡ mọi người nhiều hơn nhé! :))))