bạn Hà có một miếng bìa hình chữ nhật có chu vi 120 cm , bạn ấy cắt miếng bìa thành 2 tấm nhỏ : 1 tấm hình chữ nhật ; 1 tấm hình vuông , chu vi của hai tấm bìa nhỏ đó là 170 cm . Tính diện tích mỗi tấm bìa nhỏ ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi đây là mỗi hàng có bao nhiêu nam bao nhieeu nữ à bạn
Viết lại đề cho mn ( mk ko biết làm)
Tìm GTLN của :\(-x+\sqrt{x}\)
Đã biết viết dấu căn :))
Câu hỏi của Thân Thu Minh - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo nhé!
\(xy-3x-y=0\)
=> \(\left(xy-3x\right)-y=0\)
=> \(x\left(y-3\right)-\left(y-3\right)-3=0\)
=> \(\left(x-1\right)\left(y-3\right)=3\)
Vì x, y nguyên nên x-1, y-3 là ước ngyên cả 3
Ta có bảng sau:
x-1 | 1 | 3 | -1 | -3 |
y-3 | 3 | 1 | -3 | -1 |
x | 2 | 4 | 0 | -4 |
y | 6 | 4 | 0 | 2 |
Vậy \(\left(x;y\right) \in\left\{\left(2;6\right);\left(4;4\right);\left(0;0\right);\left(-4;2\right)\right\}\)
Kiểm tra lại đề bài nhé!
Tìm \(\overline{ab}\) biết \(\overline{ab}^2-\overline{ba}^2\) là số chính phương
Giải:
Ta có: \(\overline{ab}^2-\overline{ba}^2=\left(a.10+b\right)^2-\left(b.10+a\right)^2\)
\(=99\left(a^2-b^2\right)=9.11.\left(a^2-b^2\right)\)
Vì \(\overline{ab}^2-\overline{ba}^2\)là số chính phương => \(\overline{ab}^2-\overline{ba}^2=9.11.\left(a^2-b^2\right)=3^2.11^2k^2\); k thuộc Z
=> \(a^2-b^2=11k^2\)
Nhận xét: \(\left(a-b\right)\left(a+b\right)=a.a+a.b-a.b+b.b=a^2-b^2\)
=> \(\left(a-b\right)\left(a+b\right)=11k^2\)=> \(\left(a-b\right)\left(a+b\right)⋮11\)(1)
Ta có: a, b là các số tự nhiên từ 1 đến 9 nên \(0\le a-b\le8\); \(2\le a+b\le18\)(2)
Từ (1) ; (2) => a + b = 11
Vậy: \(\overline{ab}^2-\overline{ba}^2=3^2.11^2.\left(a-b\right)\)
Để \(\overline{ab}^2-\overline{ba}^2\) là số chính phương => (a - b ) là số chính phương => a -b = 1 hoặc a - b = 4
+) Với a - b = 1 mà a + b = 11 => a = ( 11+ 1 ) : 2 = 6; b = ( 11 - 1 ) : 2 = 5
=> \(\overline{ab}=65\)
+ Với a - b = 4 mà a + b = 11 => a = ( 11 + 4 ) :2 = 7, 5 ;loại
Vậy số cần tìm là 65.
THAY 2018 = xyz vào biểu thức
\(\frac{xyzx}{xy+xyzx+xyz}\) + \(\frac{y}{yz+y+xyz}\)+ \(\frac{z}{xz+z+1}\)
= \(\frac{xz}{1+xz+z}\)+ \(\frac{1}{z+1+xz}\)+ \(\frac{z}{xz+z+1}\)= \(\frac{xz+z+1}{xz+z+1}\)=\(1\)
Đặt \(A=\frac{2018x}{xy+2018x+2018}+\frac{y}{yzz+y+2018}+\frac{z}{xz+z+1}\)
Thay \(xyz=2018\)vào A ta được
\(A=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy\left(1+xz+z\right)}+\frac{y}{y\left(z+1+xz\right)}+\frac{1}{xz+z+1}\)
\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)
\(=\frac{xz+1+z}{xz+z+1}=1\)
làm nhanh 2 k
kq =undefined hoặc Infinity