Một sân bóng đá hình chữ nhật có diện tích 7140 m2,chiều dài 105 m.
a. Tính chiều rộng của sân bóng đá.
b. Người ta đã mở rộng sân bóng bằng cách kéo dài chiều dài thêm 5 m. Tính diện tích phần mở rộng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)Ta có: \(a^{2000}+b^{2000}=a^{2001}+b^{2001}\)
\(\Rightarrow a^{2001}+b^{2001}\)\(-a^{2000}-b^{2000}=0\)
\(\Rightarrow a^{2000}\left(a-1\right)+b^{2000}\left(b-1\right)=0\)(1)
và \(a^{2001}+b^{2001}=a^{2002}+b^{2002}\)
\(\Rightarrow a^{2002}+b^{2002}\)\(-a^{2001}-b^{2001}=0\)
\(\Rightarrow a^{2001}\left(a-1\right)+b^{2001}\left(b-1\right)=0\)(2)
Lấy (2) - (1), ta được: \(a^{2000}\left(a-1\right)^2+b^{2000}\left(b-1\right)^2=0\)(3)
Mà \(a^{2000}\left(a-1\right)^2\ge0\forall a\)và \(b^{2000}\left(b-1\right)^2\ge0\forall b\)
nên (3) xảy ra\(\Leftrightarrow\hept{\begin{cases}a^{2000}\left(a-1\right)^2=0\\b^{2000}\left(b-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1hoaca=0\\b=1hoacb=0\end{cases}}\)
Mà a,b dương nên a = 1 và b = 1
a) Áp dụng BĐT Svac - xơ:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=9\)
(Dấu "="\(\Leftrightarrow a=b=c=\frac{1}{3}\))
\(\frac{5}{21}\)+ \(0,5\) - \(\frac{19}{23}+\frac{16}{21}-\frac{4}{23}\)= 0,5
Chúc học tốt!!!
\(\left(1-x\right)\frac{3}{x^3-1}\)
\(=\left(x-1\right)\frac{-3}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{-3}{x^2+x+1}\)
\(\Leftrightarrow\left(a+b+c\right).\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)
\(\Leftrightarrow\frac{a\left(a+b+c\right)}{b+c}+\frac{b\left(a+b+c\right)}{c+a}+\frac{c\left(a+b+c\right)}{a+b}=a+b+c\)
\(\Leftrightarrow\frac{a^2+a.\left(b+c\right)}{b+c}+\frac{b^2+b.\left(c+a\right)}{c+a}+\frac{c^2+c.\left(a+b\right)}{a+b}=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\left(dpcm\right)\)
Hiệu của hai số là 38,07 . Nếu dời dấu phẩy của số lớn sang trái 1 hàng thì đc số bé . Tìm hai số đó
Ta có : Nếu dời dấu phẩy của số lớn sang trái 1 hàng thì được số bé
=> Số lớn gấp 10 lần số bé
Gọi số lớn là 10 phần ; số bé là 1 phần
=> Hiệu số phần bằng nhau là : 10 - 1 = 9 phần
=> Số lớn là : 38,07 : 9 x 10 = 42,3
=> Số bé là : 42,3 - 38,07 = 4,23
Ta có \(\widehat{ACH}+\widehat{ECK}=90^o\)\(\left(\widehat{ACE}=90^o\right)\)
Mà \(\widehat{ECK}+\widehat{CEK}=90^o\)
\(\Rightarrow\widehat{ACH}=\widehat{CEK}\)
Xét \(\Delta AHC\)và \(\Delta CKE\)ta có :
\(\widehat{H}=\widehat{K}\left(=90^o\right)\)
\(AC=CE\left(gt\right)\)
\(\widehat{ACH}=\widehat{CEK}\left(cmt\right)\)
\(\Rightarrow\Delta AHC=\Delta CKE\left(ch-gn\right)\)
\(\Rightarrow AH=CK\)( hai cạnh tương ứng ) \(\left(1\right)\)
Chứng minh tương tự, ta cũng có :
\(\Delta DIB=\Delta BHA\left(ch-gn\right)\)\(\Rightarrow IB=AH\)( hai cạnh tương ứng ) \(\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow BI=CK\left(đpcm\right)\)
Chúc em gái chị học tốt nhé ^^
Bài giải
a) Chiều rộng của sân bóng đá hình chữ nhật là:
7140 ÷ 105 = 68 (m)
b) Diện tích phần mở rộng của sân bóng là:
5 × 68 = 340 (m2)
Đáp số: a) 68 m
b) 340 m2
chiều rộng sân bóng đá là
7140 : 105 = 68