Tam giác FGH có ^G = 97°, ^H = 40°. Vẽ đoạn thẳng FI song song với GH như hình vẽ.
tính số đo F1 và F2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án:
Giải thích các bước giải:
2x+5x+7x=35-32
(2+5+7) . x = 3
14 . x = 3
x = 3 : 14
x = 0,2 dư 2
1) Chỉ tìm được Max thôi nhé
a) \(C=\frac{4}{5}+\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\le\frac{4}{5}+\frac{20}{8}=\frac{33}{10}\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|3x+5\right|=0\\\left|4y+5\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{5}{3}\\y=-\frac{5}{4}\end{cases}}\)
b) \(E=\frac{2}{3}+\frac{21}{\left(x+3y\right)^2+5\left|x+5\right|+14}\le\frac{2}{3}+\frac{21}{14}=\frac{13}{6}\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+3y\right)^2=0\\5\left|x+5\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=\frac{5}{3}\end{cases}}\)
2) Thì chỉ tìm được GTNN thôi nhé
a) \(A=5+\frac{-8}{4\left|5x+7\right|+24}\ge5-\frac{8}{24}=\frac{14}{3}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(4\left|5x+7\right|=0\Rightarrow x=-\frac{7}{5}\)
Vậy Min(A) = 14/3 khi x = -7/5
b) \(B=\frac{6}{5}-\frac{14}{5\left|6y-8\right|+35}\ge\frac{6}{5}-\frac{14}{35}=\frac{4}{5}\left(\forall y\right)\)
Dấu "=" xảy ra khi: \(5\left|6y-8\right|=0\Rightarrow x=\frac{4}{3}\)
Vậy Min(B) = 4/5 khi x = 4/3
a) Gọi \(\left(2n-3;n-2\right)=d\)
Ta có: \(\hept{\begin{cases}\left(2n-3\right)⋮d\\\left(n-2\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2n-3\right)⋮d\\\left(2n-4\right)⋮d\end{cases}}\)
\(\Rightarrow\left(2n-3\right)-\left(2n-4\right)⋮d\)
\(\Leftrightarrow1⋮d\)
\(\Rightarrow d=\pm1\)
\(\Rightarrow\left(2n-3;n-2\right)=1\)
=> 2n-3 và n-2 nguyên tố cùng nhau
=> A tối giản
b) \(A=\frac{2n-3}{n-2}=\frac{\left(2n-4\right)+1}{n-2}=2+\frac{1}{n-2}\)
Để A nguyên => \(\frac{1}{n-2}\inℤ\Rightarrow n-2\in\left\{-1;1\right\}\)
=> \(n\in\left\{1;3\right\}\) với n nguyên
Đề đúng phải là:
\(\frac{x+1}{2014}+\frac{x+2}{2013}+\frac{x+3}{2012}=\frac{x+10}{2005}+\frac{x+11}{2004}+\frac{x+12}{2003}\)
Cộng mỗi phân thức thêm 1, quy đồng rồi chuyển sang 1 vế ta được:
\(\frac{x+2015}{2014}+\frac{x+2015}{2013}+\frac{x+2015}{2012}-\frac{x+2015}{2005}-\frac{x+2015}{2004}-\frac{x+2015}{2003}=0\)
\(\Leftrightarrow\left(x+2015\right)\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
Mà BT tích sau luôn nhỏ hơn 0
=> x+2015=0 => x = -2015
\(\frac{x+1}{2014}+\frac{x+2}{2013}+\frac{x+3}{2012}=\frac{x+10}{2005}+\frac{x+11}{2004}+\frac{x+12}{2003}\)( như này đúng không ? :)) )
<=> \(\left(\frac{x+1}{2014}+1\right)+\left(\frac{x+2}{2013}+1\right)+\left(\frac{x+3}{2012}+1\right)=\left(\frac{x+10}{2005}+1\right)+\left(\frac{x+11}{2004}+1\right)+\left(\frac{x+12}{2003}+1\right)\)
<=> \(\frac{x+1+2014}{2014}+\frac{x+2+2013}{2013}+\frac{x+3+2012}{2012}=\frac{x+10+2005}{2005}+\frac{x+11+2004}{2004}+\frac{x+12+2003}{2003}\)
<=> \(\frac{x+2015}{2014}+\frac{x+2015}{2013}+\frac{x+2015}{2012}=\frac{x+2015}{2005}+\frac{x+2015}{2004}+\frac{x+12}{2003}\)
<=> \(\frac{x+2015}{2014}+\frac{x+2015}{2013}+\frac{x+2015}{2012}-\frac{x+2015}{2005}-\frac{x+2015}{2004}-\frac{x+12}{2003}=0\)
<=> \(\left(x+2015\right)\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
Vì \(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\ne0\)
=> x + 2015 = 0
=> x = -2015
\(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)
\(=\text{[}\left(x+y\right)\left(x+4y\right)\text{]}\text{[}\left(x+2y\right)\left(x+3y\right)\text{]}+y^4\)
\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
\(=\text{[}\left(x^2+5xy\right)+4y^2\text{]}\text{[}\left(x^2+5xy\right)+6y^2\text{]}+y^4\)
\(=\left(x^2+5xy\right)^2+10y^2\left(x^2+5xy\right)+25y^4=\left(x^2+5xy+5y^2\right)\)
Vậy đề bài là số chính phương.