K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2020

Đáp án:

Giải thích các bước giải:

 2x+5x+7x=35-32

(2+5+7) . x = 3

14           . x = 3 

                 x = 3 : 14

                 x = 0,2 dư 2

30 tháng 9 2020

1) Chỉ tìm được Max thôi nhé

a) \(C=\frac{4}{5}+\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\le\frac{4}{5}+\frac{20}{8}=\frac{33}{10}\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|3x+5\right|=0\\\left|4y+5\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{5}{3}\\y=-\frac{5}{4}\end{cases}}\)

b) \(E=\frac{2}{3}+\frac{21}{\left(x+3y\right)^2+5\left|x+5\right|+14}\le\frac{2}{3}+\frac{21}{14}=\frac{13}{6}\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+3y\right)^2=0\\5\left|x+5\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=\frac{5}{3}\end{cases}}\)

30 tháng 9 2020

2) Thì chỉ tìm được GTNN thôi nhé

a) \(A=5+\frac{-8}{4\left|5x+7\right|+24}\ge5-\frac{8}{24}=\frac{14}{3}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(4\left|5x+7\right|=0\Rightarrow x=-\frac{7}{5}\)

Vậy Min(A) = 14/3 khi x = -7/5

b) \(B=\frac{6}{5}-\frac{14}{5\left|6y-8\right|+35}\ge\frac{6}{5}-\frac{14}{35}=\frac{4}{5}\left(\forall y\right)\)

Dấu "=" xảy ra khi: \(5\left|6y-8\right|=0\Rightarrow x=\frac{4}{3}\)

Vậy Min(B)  = 4/5 khi x = 4/3

25 tháng 9 2021

CHÚC BẠN HOK TỐT

29 tháng 9 2020

a) Gọi \(\left(2n-3;n-2\right)=d\)

Ta có: \(\hept{\begin{cases}\left(2n-3\right)⋮d\\\left(n-2\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2n-3\right)⋮d\\\left(2n-4\right)⋮d\end{cases}}\)

\(\Rightarrow\left(2n-3\right)-\left(2n-4\right)⋮d\)

\(\Leftrightarrow1⋮d\)

\(\Rightarrow d=\pm1\)

\(\Rightarrow\left(2n-3;n-2\right)=1\)

=> 2n-3 và n-2 nguyên tố cùng nhau

=> A tối giản

b) \(A=\frac{2n-3}{n-2}=\frac{\left(2n-4\right)+1}{n-2}=2+\frac{1}{n-2}\)

Để A nguyên => \(\frac{1}{n-2}\inℤ\Rightarrow n-2\in\left\{-1;1\right\}\)

=> \(n\in\left\{1;3\right\}\) với n nguyên

28 tháng 9 2020

Đề đúng phải là:

\(\frac{x+1}{2014}+\frac{x+2}{2013}+\frac{x+3}{2012}=\frac{x+10}{2005}+\frac{x+11}{2004}+\frac{x+12}{2003}\)

Cộng mỗi phân thức thêm 1, quy đồng rồi chuyển sang 1 vế ta được:

\(\frac{x+2015}{2014}+\frac{x+2015}{2013}+\frac{x+2015}{2012}-\frac{x+2015}{2005}-\frac{x+2015}{2004}-\frac{x+2015}{2003}=0\)

\(\Leftrightarrow\left(x+2015\right)\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)

Mà BT tích sau luôn nhỏ hơn 0

=> x+2015=0 => x = -2015

28 tháng 9 2020

\(\frac{x+1}{2014}+\frac{x+2}{2013}+\frac{x+3}{2012}=\frac{x+10}{2005}+\frac{x+11}{2004}+\frac{x+12}{2003}\)( như này đúng không ? :)) )

<=> \(\left(\frac{x+1}{2014}+1\right)+\left(\frac{x+2}{2013}+1\right)+\left(\frac{x+3}{2012}+1\right)=\left(\frac{x+10}{2005}+1\right)+\left(\frac{x+11}{2004}+1\right)+\left(\frac{x+12}{2003}+1\right)\)

<=> \(\frac{x+1+2014}{2014}+\frac{x+2+2013}{2013}+\frac{x+3+2012}{2012}=\frac{x+10+2005}{2005}+\frac{x+11+2004}{2004}+\frac{x+12+2003}{2003}\)

<=> \(\frac{x+2015}{2014}+\frac{x+2015}{2013}+\frac{x+2015}{2012}=\frac{x+2015}{2005}+\frac{x+2015}{2004}+\frac{x+12}{2003}\)

<=> \(\frac{x+2015}{2014}+\frac{x+2015}{2013}+\frac{x+2015}{2012}-\frac{x+2015}{2005}-\frac{x+2015}{2004}-\frac{x+12}{2003}=0\)

<=> \(\left(x+2015\right)\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)

Vì \(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\ne0\)

=> x + 2015 = 0

=> x = -2015

28 tháng 9 2020

M N P A B C D E F

Ta có : AB là đường trung trực của MN

             CD là đường trung trực của MP

              EF là đường trung trực của NP

27 tháng 9 2020

\(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(=\text{[}\left(x+y\right)\left(x+4y\right)\text{]}\text{[}\left(x+2y\right)\left(x+3y\right)\text{]}+y^4\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

\(=\text{[}\left(x^2+5xy\right)+4y^2\text{]}\text{[}\left(x^2+5xy\right)+6y^2\text{]}+y^4\)

\(=\left(x^2+5xy\right)^2+10y^2\left(x^2+5xy\right)+25y^4=\left(x^2+5xy+5y^2\right)\)

Vậy đề bài là số chính phương.