Một bệnh viện huyện tổng kết trong tháng hai năm 2009 có 29 em bé ra đời. Hỏi có ngày nào trong tháng đó có hai em bé ra đời hay không ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`1/4 . 2/6 . 3/8 . 4/10 . ... . 31/64 = 2^x`
`=> 1/(2.2) . 2/(2.3) . 3/(2.4) . 4/(2.5) . ... . 31/(32.2) = 2^x`
Số phân số có trong dãy là: `(31 - 1) : 1 + 1 = 31` (phân số)
`=> (1.2.3.4...31)/(2^31 . 2 . 3 . 4 . 5 ... 31.32) = 2^x`
`=> 1/(2^31 . 32) = 2^x`
`=> 1/(2^31 . 2^5) = 2^x`
`=> 1/(2^(31+5)) = 2^x`
`=> 1/(2^36) = 2^x`
`=> 2^(-36) = 2^x`
`=> x = -36`
Vậy `x = -36`
a) Ta có:
`m^2>=0` với mọi m
`=>m^2+1/2>=1/2>0` với mọi m
`=>` Bất pt: `(m^2+1/2)x-1<=0` có hệ số `a≠0`
`=>`Bất pt luôn là bất pt bậc nhất 1 ẩn với mọi m
b) Ta có:
`m^2+m+2=(m^2+2*m*1/2+1/4)+7/4`
`=(m+1/2)^2+7/4>=7/4>=0` với mọi m
`=>-(m^2+m+2)<=-7/2<0` với mọi m
`=>-(m^2+m+2)≠0` với mọi m
=> Bất pt `-(m^2+m+2)x<=-m+2024` luôn là bpt bậc nhất 1 ẩn
a.
\(\left\{{}\begin{matrix}S=x_1+x_2=7\\P=x_1x_2=10\end{matrix}\right.\)
Theo định lý Viet đảo, \(x_1;x_2\) là nghiệm:
\(x^2-7x+10=0\)
Trình bày tương tự câu a ta có:
b.
\(x^2-2x-35=0\)
c.
\(x^2+13x+36=0\)
Giá sau khi giảm so với giá bìa:
1 - 40% = 60%
Giá bìa quyển sách là:
69600 : 60% = 116000 (đồng)
a/
Gọi x là số phút gọi thỏa mãn đề bài
\(32+\left(x-45\right).0,4=44+0,25x\)
\(\Leftrightarrow32+0,4x-18=44+0,25x\)
\(\Leftrightarrow0,15x=30\Rightarrow x=200\)
b/
+Nếu KH gọi 180 phút trong 1 tháng thì
Số tiền cho gói cước A là \(32+\left(180-45\right).0,4=86\) USD
Số tiền cho gói cước B là \(44+180.0,25=89\) USD
Trong trường hợp này chọn gói cước A có lợi hơn
+ Trường hợp KH gọi 500 phút thì
Số tiền cho gói cước A: \(32+\left(500-45\right).0,4=214\) USD
Số tiền cho gói cước B: \(44+500.0,25=169\) USD
Trong trường hợp này chọn gói cước B có lợi hơn
\(a,\dfrac{x+2}{6}+\dfrac{x+5}{3}>\dfrac{x+3}{5}+\dfrac{x+6}{2}\\ < =>\left(\dfrac{x+2}{6}+1\right)+\left(\dfrac{x+5}{3}+1\right)>\left(\dfrac{x+3}{5}+1\right)+\left(\dfrac{x+6}{2}+1\right)\\ < =>\dfrac{x+8}{6}+\dfrac{x+8}{3}>\dfrac{x+8}{5}+\dfrac{x+8}{2}\\ < =>\dfrac{x+8}{5}+\dfrac{x+8}{2}-\dfrac{x+8}{6}-\dfrac{x+8}{2}< 0\\ < =>\left(x+8\right)\left(\dfrac{1}{5}+\dfrac{1}{2}-\dfrac{1}{6}-\dfrac{1}{3}\right)< 0\)
Mà: `1/5+1/2+1/6-1/3>0`
`=>x+8<0`
`<=>x<-8`
\(\dfrac{x-2}{1007}+\dfrac{x-1}{1008}< \dfrac{2x-1}{2017}+\dfrac{2x-3}{2015}\\ < =>\left(\dfrac{x-2}{1007}-1\right)+\left(\dfrac{x-1}{1008}-1\right)< \left(\dfrac{2x-1}{2017}-1\right)+\left(\dfrac{2x-3}{2015}-1\right)\\ < =>\dfrac{x-1009}{1007}+\dfrac{x-1009}{1008}< \dfrac{2x-2018}{2017}+\dfrac{2x-2018}{2015}\\ < =>\dfrac{x-1009}{1007}+\dfrac{x-1009}{1008}-\dfrac{2\left(x-1009\right)}{2017}-\dfrac{2\left(x-1009\right)}{2015}< 0\\ < =>\left(x-1009\right)\left(\dfrac{1}{1007}+\dfrac{1}{1008}-\dfrac{2}{2017}-\dfrac{2}{2015}\right)< 0\)
Mà: `1/1006+1/1008-2/2017-2/2015>0`
`=>x-1009<0`
`<=>x<1009`
a) \(\dfrac{x+2004}{x+2005}+\dfrac{x+2005}{2006}< \dfrac{x+2006}{2007}+\dfrac{x+2007}{2008}\\ \Rightarrow\left(\dfrac{x+2004}{2005}-1\right)+\left(\dfrac{x+2005}{2006}-1\right)< \left(\dfrac{x+2006}{2007}-1\right)+\left(\dfrac{x+2007}{2008}-1\right)\\ \Rightarrow\dfrac{x-1}{2005}+\dfrac{x-1}{2006}< \dfrac{x-1}{2007}+\dfrac{x-1}{2008}\\ \Rightarrow\dfrac{x-1}{2005}+\dfrac{x-1}{2006}-\dfrac{x-1}{2007}-\dfrac{x-1}{2008}< 0\\ \)
\(\Rightarrow\left(x-1\right)\left(\dfrac{1}{2005}+\dfrac{1}{2006}-\dfrac{1}{2007}-\dfrac{1}{2008}\right)< 0\left(a\right)\)
Nhận thấy: \(\dfrac{1}{2005}>\dfrac{1}{2007},\dfrac{1}{2006}>\dfrac{1}{2008}\\ \Rightarrow\dfrac{1}{2005}-\dfrac{1}{2007}>0,\dfrac{1}{2006}-\dfrac{1}{2008}>0\\ \Rightarrow\dfrac{1}{2005}+\dfrac{1}{2006}-\dfrac{1}{2007}-\dfrac{1}{2008}>0\)
\(\left(a\right)\Rightarrow x-1< 0\Leftrightarrow x< 1\)
Vậy \(S=\left\{x|x< 1\right\}\)
b) \(\dfrac{x-2}{2002}+\dfrac{x-4}{2000}< \dfrac{x-3}{2001}+\dfrac{x-5}{1999}\\ \Rightarrow\left(\dfrac{x-2}{2002}-1\right)+\left(\dfrac{x-4}{2000}-1\right)< \left(\dfrac{x-3}{2001}-1\right)+\left(\dfrac{x-5}{1999}-1\right)\\ \Rightarrow\dfrac{x-2004}{2002}+\dfrac{x-2004}{2000}< \dfrac{x-2004}{2001}+\dfrac{x-2004}{1999}\\ \Rightarrow\dfrac{x-2004}{2002}+\dfrac{x-2004}{2000}-\dfrac{x-2004}{2001}-\dfrac{x-2004}{1999}< 0\\ \)
\(\Rightarrow\left(x-2004\right)\left(\dfrac{1}{2002}+\dfrac{1}{2000}-\dfrac{1}{2001}-\dfrac{1}{1999}\right)< 0\left(b\right)\)
Nhận thấy: \(\dfrac{1}{2002}< \dfrac{1}{2001},\dfrac{1}{2000}< \dfrac{1}{1999}\Rightarrow\dfrac{1}{2002}-\dfrac{1}{2001}< 0,\dfrac{1}{2000}-\dfrac{1}{1999}< 0\\ \Rightarrow\dfrac{1}{2002}+\dfrac{1}{2000}-\dfrac{1}{2001}-\dfrac{1}{1999}< 0\)
\(\left(b\right)\Rightarrow x-2004>0\Leftrightarrow x>2004\)
`24^2 - 25 + (2x + 5)^2 = 0`
Ta có: `24^2 > 25`
`=> 24^2 - 25 > 0`
Và `(2x + 5)^2 >= 0 ∀x `
`=> 24^2 - 25 + (2x + 5)^2 > 0`
Vậy phương trình đã cho vô nghiệm
vì tháng 2 năm 2009 có 28 ngày nên trong đó có 1 ngày có ít nhất 2 em bé ra đời
Ta có: `2009` không chia hết `4`
`=> 2009` không là năm nhuận
`=>` Tháng hai chỉ có `28` ngày
Mà có đến `29` em bé sinh ra
Nên chắc chắn có ít nhất 1 cặp ra đời cùng ngày