Tính hợp lý tổng sau
S=1+1/3+1/9+1/27+....+1/2187
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\((3x-1)+3^2=5^2\)
\(\Rightarrow(3x-1)^4+9=25\)
\(\Rightarrow(3x-1)^4=25-9\)
\(\Rightarrow(3x-1)^4=16\)
\(\Rightarrow(3x-1)=(-2)^4=2^4\)
\(\Rightarrow\hept{\begin{cases}3x-1=2\\3x-1=-2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3x=2+1\\3x=-2+1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3x=3\\3x=-1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\div3\\x=-1\div3\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}\)
\([16\times1+(153-x)]=3870\)
\(\Rightarrow16+(153-x)=3870\)
\(\Rightarrow153-x=3870-16\)
\(\Rightarrow153-x=3854\)
\(\Rightarrow x=153-3854\)
\(\Rightarrow x=-3701\)
đè sai hả kg ra kq nếu đề sai k tui đưa đề ms lm cho
\(2^3+(3x+1)^3=24\)
\(\Rightarrow8+(3x+1)^3=24\)
\(\Rightarrow(3x+1)^3=16\)
\(\Rightarrow x\in\varnothing\)
\(x-\frac{3}{4}=1-\frac{5}{6}\)
\(x-\frac{3}{4}=\frac{1}{6}\)
\(x=\frac{1}{6}+\frac{3}{4}\)
\(x=\frac{11}{12}\)
\(x-\frac{3}{4}=1-\frac{5}{6}\)
\(x-\frac{3}{4}=\frac{1}{6}\)
\(x=\frac{1}{6}+\frac{3}{4}\)
\(x=\frac{11}{12}\)
\(2\cdot x+1292=2\)
\(2\cdot x=2-1292\)
\(2\cdot x=-1290\)
\(x=-1290:2\)
\(x=-645\)
135 - 3 ( x + 1 ) = 30
3 ( x + 1 ) = 105
x + 1 = 35
x = 34
\(1005^2\cdot1005^x=1005^7\)
\(1005^{2+x}=1005^7\)
=> x + 2 = 7
=> x = 5
Vậy,........
\(S=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(3S=3+1+\frac{1}{3}+...+\frac{1}{3^6}\)
\(3S-S=\left(3+1+\frac{1}{3}+...+\frac{1}{3^6}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)\)
\(2S=3-\frac{1}{3^7}\)
\(S=\frac{3-\frac{1}{3^7}}{2}\)
S= 1+ \(\frac{1}{3}\)+ \(\frac{1}{9}\)+...+ \(\frac{1}{729}\)+ \(\frac{1}{2187}\).
=> S= 1+ \(\frac{1}{3}\)+ \(\frac{1}{3^2}\)+...+ \(\frac{1}{3^6}\)+ \(\frac{1}{3^7}\).
=>3S= 3+ 1+ \(\frac{1}{3}\)+...+ \(\frac{1}{3^5}\)+ \(\frac{1}{3^6}\).
=> 3S- S=( 3+ 1+ \(\frac{1}{3}\)+...+ \(\frac{1}{3^5}\)+ \(\frac{1}{3^6}\))-( 1+ \(\frac{1}{3}\)+ \(\frac{1}{3^2}\)+...+ \(\frac{1}{3^6}\)+ \(\frac{1}{3^7}\)).
=> 2S= 3- \(\frac{1}{3^7}\).
=> 2S= 3- \(\frac{1}{2187}\).
=> 2S= \(\frac{6560}{2187}\).
=> S= \(\frac{6560}{2187}\): 2.
=> S= \(\frac{3280}{2187}\).
Vậy S= \(\frac{3280}{2187}\).