Tìm x , biết :
( x + 2 ) ( +3 ) -(x - 2 ) ( x + 5 ) = 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét dãy số :
a,2a,3a,4a,..,(p−1)a
TH1 :
Nếu tồn tại 2 số có cùng số dư khi chia cho p là m.a và n.a ( m < n , m và n là các hằng số )
thì m.a - n.a = ( m - n ) a ⋮ p .
dễ nhận thấy 0 < m - n < p nên a ⋮ p suy ra (a,p) = p ≠ 1 suy ra Vô lý ( Loại )
TH2 :
Khi lấy các số trong dãy trên chia cho p không có số nào có cùng số dư khi chia cho p .
Suy ra các số dư lần lượt là 1,2,3,4,... p-1 vì a không chia hết cho p .
Hay a.2a.3a...(p−1)a≡1.2.3.4...(p−1)(modp)
Hay ap−1.(p−1)!≡(p−1)!(modp)
Hay ap−1≡1(modp)
a) Nguyên tố hóa học là tập hợp những nguyên tử cùng loại, có cùng số proton trong hạt nhân.
b) Cách biểu diễn nguyên tố: Mỗi nguyên tố được biểu diễn bằng một hay hai chữ cái, trong đó chữ cái đầu được viết ở dạng chữ in hoa, gọi là kí hiệu hóa học.
Thí dụ: Nguyên tố hiđro được kí hiệu là H, nguyên tố natri là Na, ...
Xem thêm tại: https://loigiaihay.com/bai-2-trang-20-sgk-hoa-hoc-8-c51a9751.html#ixzz5yBqr4K2J
a) Nguyên tố hóa học là tập hợp những nguyên tử cùng loại, có cùng số proton trong hạt nhân.
b) Mỗi nguyên tố hóa học được biểu diễn bằng một hay hai chữ cái đầu tiên trong tên latinh nguyên tố đó, trong đó chữ cái đầu tiên được viết dưới dạng in hoa, gọi là kí hiệu hóa học.
Thí dụ: H, Ca, A
cho đa thức: M=a(b+c)2+b(a2+c2)+c(a2+b2)
a, CMR nếu b+c=0 thì M=0
b, phân tích đa thức M thành nhân tử
a) \(M=a\left(b+c\right)^2+b\left(a^2+c^2\right)+c\left(a^2+b^2\right)\)
\(M=a\left(b+c\right)^2+a^2b+c^2b+a^2c+b^2c\)
\(M=a\left(b+c\right)^2+a^2\left(b+c\right)+bc\left(b+c\right)\)
\(M=a.0^2+a^2.0+bc.0=0\left(đpcm\right)\)
b)\(M=a\left(b+c\right)^2+a^2\left(b+c\right)+bc\left(b+c\right)\)
\(M=\left(b+c\right)\left(ab+ac+a^2+bc\right)\)
\(M=\left(b+c\right)\left[a\left(a+b\right)+c\left(a+b\right)\right]\)
\(M=\left(b+c\right)\left(a+c\right)\left(a+b\right)\)
\(A=\left(x-1\right)\left(x-2\right)\left(x-3\right)+\left(x-1\right)\left(x-2\right)-\left(x-1\right)\)
\(A=\left(x-1\right)\left(x^2-5x+6\right)+\left(x-1\right)\left(x-2\right)-\left(x-1\right)\)
\(A=\left(x-1\right)\left(x^2-5x+6\right)+\left(x-1\right)\left(x-2\right)-\left(x-1\right)\)\(A=\left(x-1\right)\left(x^2-5x+6+x-2\right)-\left(x-1\right)\)
\(A=\left(x-1\right)\left(x^2-4x+4\right)-\left(x-1\right)\)
\(A=\left(x-1\right)\left(x-2\right)^2-\left(x-1\right)\)
\(A=\left(x-1\right)\left[\left(x-2\right)^2-1\right]\)
\(A=\left(x-3\right)\left(x-1\right)^2\)
link tham khảo
https://olm.vn/hoi-dap/detail/9212510579.html
hok tót
Pt tương đương:
\(2\sqrt{3\left(x^2+y^2+z^2\right)}\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}+3\)
Có: \(\sqrt{3\left(x^2+y^2+z^2\right)}\ge\sqrt{3\cdot3\left(xyz\right)^2}=3\)
Đồng thời:
\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}=x+y+z\le\sqrt{\left(x+y+z\right)^2}\le\sqrt{3\left(x^2+y^2+z^2\right)}\)
Rồi cộng lại
Ta có M=a(b+c)+3b(c+a)+5c(a+b)=a(3-a)+3b(3-b)+5c(3-c)=\(\frac{81}{4}\)-\(\left(a-\frac{3}{2}\right)^2+3\left(b-\frac{3}{2}\right)^2+5\left(c-\frac{3}{2}\right)^2\)
Đặt x=\(\left|a-\frac{3}{2}\right|\),y=\(\left|b-\frac{3}{2}\right|\),z=\(\left|c-\frac{3}{2}\right|\)=>x+y+z\(\ge\left|a+b+c-\frac{9}{2}\right|=\frac{3}{2}\)
Khi đó M=\(\frac{81}{4}-\left(x^2+3y^2+5z^2\right)\)
Đưa thêm các tham số\(\alpha,\beta,\gamma>0\)Áp dụng bất đẳng thức AM-GM:\(x^2+\alpha^2\ge2x\alpha\)(1);\(3y^2+3\beta^2\ge6y\beta\)(2);\(5z^2+5\gamma^2\ge10z\gamma\)(3)
Suy ra: \(M-\alpha^2-3\beta^2-5\gamma^2\le\frac{81}{4}-2\left(x\alpha+3y\beta+5z\gamma\right)\)
Ta chọn \(\alpha=3\beta=5\gamma\)\(\Rightarrow M\le\frac{81}{4}+\alpha^2+3\beta^2+5\gamma^2-2\alpha\left(x+y+z\right)\)\(\le\frac{81}{4}+\alpha^2+3\beta^2+5\gamma^2-3a\)
Ta thấy dấu bằng các bất đẳng thức (1),(2),(3) xảy ra khi \(x=\alpha,y=\beta,z=\gamma\)\(\Rightarrow\alpha+\beta+\gamma=\alpha+\frac{\alpha}{3}+\frac{\alpha}{5}=x+y+z=\frac{3}{2}\)\(\Rightarrow\alpha=\frac{45}{46}\),\(\beta=\frac{15}{46},\gamma=\frac{9}{46}\)
Vậy MaxM=\(\le\frac{81}{4}+\left(\frac{45}{46}\right)^2+3\left(\frac{15}{46}\right)^2+5\left(\frac{9}{46}\right)^2-3.\frac{45}{46}\)=\(\frac{432}{23}\)
ta có x/a=y/b=z/c
=> x^2/ax=y^2/bx=z^2/cx
= x^2+y^2+z^2/ax+by+cz (1)
x/a=y/b=z/c
=> ax/a^2=bx/b^2=cx/c^2
=ax+bx+cx/a^2+b^2+c^2
từ 1, 2 => x^2+y^2+z^2/ax+by+cz= ax+bx+cx/a^2+b^2+c^2
=>(x^2+y^2+z^2)(a^2+b^2+c^2)=(ax+by+cz)^2 (đpcm)
X + 3 nhé
\(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=6\)
\(\Leftrightarrow\left(x^2+5x+6\right)-\left(x^2+3x-10\right)=6\)
\(\Leftrightarrow2x+16=6\Leftrightarrow x=-5\)