Phân tích thành nhân tử
\(\left(x+1^4\right)+\left(x^2+x+1\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm có mà link https://h7.net/hoi-dap/toan-8/phan-h-da-thuc-x-1-x-3-x-5-x-7-15-thanh-nhan-tu-faq257547.html
tí mình gửi qua cho
học tốt
\(B=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(=\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)(1)
Đặt \(x^2+8x+11=t\)thay vào (1) ta được :
\(\left(t-4\right)\left(t+4\right)+15\)
\(=t^2-16+15\)
\(=t^2-1\)
\(=\left(t-1\right)\left(t+1\right)\)Thay \(t=x^2+8x+11\)vào bt ta được:
\(\left(x^2+8x+11-1\right)\left(x^2+8x+11+1\right)\)
\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
\(=\left(x^2+8x+10\right)\left(x^2+2x+6x+12\right)\)
\(=\left(x^2+8x+10\right)\left[x\left(x+2\right)+6\left(x+2\right)\right]\)
\(=\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)\)
Câu 2.
Câu hỏi của hoang the cuong - Toán lớp 8 - Học toán với OnlineMath
= \(\frac{x^2}{4}-2\frac{x}{2}y+y^2=\frac{x^2}{4}-xy+y^2\)
Study well
\(\sqrt{a}.\sqrt{a}-\sqrt{b}\sqrt{b}-\sqrt{c}\sqrt{c}\)
\(=\sqrt{a^2}-\sqrt{b^2}-\sqrt{c^2}\)
\(=a-b-c\)
B A C D x y O
1) Theo bài ra ta có:
BD//AC; AB//CD
=> ABDC là hình bình hành
mà AB=AC
=> ABCD là hình thoi
Ta lại có \(\widehat{A}=90^o\)
=> ABCD là vuông.
b) Hai đường chéo của hình vuông cắt nhau tại trung điểm mỗi đường
Gọi O' là giao điểm của BC và AD
=> O' là trung điểm BC
=> O' trùng điểm O
=> O là trung điểm AD
=> A, O, D thẳng hàng
Em kiểm tra lại đề bài nhé!
Dạ là \(\left(x+1\right)^4\)chứ ko phải \(\left(x+1^4\right)\)ạ
Còn \(\left(x^2+x+1\right)^2\)giữ nguyên ạ