Cho tam giác abc vuông tại a , vẽ đường cao ah, ab=6cm , ac=8cm . a) chứng minh tam giác hba đồng dạng tam giác abc . b) tính độ dài ah .c) gọi i và k lần lượt hình chiếu của điểm h lên cạnh ab,ac . chứng minh ai.ab = ak.ac
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Giá bán dự kiến mỗi sản phẩm:
$200000\times (100+30):100=260000$ (đồng)
b. Giả sử bán được $x$ sản phẩm với giá dự kiến thì còn $100-x$ sản phẩm với giá khuyến mãi.
Số tiền thu được:
$260000x+260000(100-20):100.(100-x)$
$=260000x+208000(100-x)=52000x+20800000$ (đông)
Nhận thấy \(x=0\) ko phải nghiệm
Với \(x\ne0\) chia 2 vế của pt cho \(x^2\) ta được:
\(6\left(x^2+\dfrac{1}{x^2}\right)-5\left(x+\dfrac{1}{x}\right)-38=0\)
Đặt \(x+\dfrac{1}{x}=t\Rightarrow x^2+\dfrac{1}{x^2}=t^2-2\)
\(\Rightarrow6\left(t^2-2\right)-5t-38=0\)
\(\Leftrightarrow6t^2-5t-50=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{10}{3}\\t=-\dfrac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=\dfrac{10}{3}\\x+\dfrac{1}{x}=-\dfrac{5}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3x^2-10x+3=0\\2x^2+5x+2=0\end{matrix}\right.\)
\(\Rightarrow x=\left\{-2;-\dfrac{1}{2};\dfrac{1}{3};3\right\}\)
ĐKXĐ : \(\left\{{}\begin{matrix}4x^2-1\ne0\\8x^3+1\ne0\end{matrix}\right.\Leftrightarrow x\ne\pm\dfrac{1}{2}\)
\(P=\dfrac{2x^5-x^4-2x+1}{4x^2-1}+\dfrac{8x^2-4x+2}{8x^3+1}\)
\(=\dfrac{\left(x^4-1\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)
\(=\dfrac{x^4-1}{2x+1}+\dfrac{2}{2x+1}=\dfrac{x^4+1}{2x+1}\)