a, b, c là các số thực dương, chứng minh rằng:
\(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\)
Bạn ơi giúp mình với :))))))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu là bạn anh ta,mik sẽ khuyên ko nên tham gia vì vòng 100 người có khả năng người ra mặt 12 rất ,và cả 100 người đều sẽ C.H.Ế.T 😈😈😈
cái gì mà đe dọa đến tính mạng thì phương án tốt nhất là ko đi
\(A=\dfrac{x^2}{x-1}\) ( x khác { 0;\(\pm\)1} )
\(\sqrt{A}\) xác định <=> A>=0
=> x > 1
\(A=x+1+\dfrac{1}{x-1}=\left(x-1+\dfrac{1}{x-1}\right)+2>=2\sqrt{\left(x-1\right).\dfrac{1}{x-1}}+2=4\)
=> \(\sqrt{A}\) >= 2
Vậy giá trị nhỏ nhất của \(\sqrt{A}\) là : 2 khi x = 2
Lời giải:
Chu vi đáy: $2.8\pi=16\pi$ (cm)
Diện tích xung quanh: $16\pi.10=160$ (cm2)
Diện tích đáy: $8^2\pi =64\pi$ (cm2)
Thể tích hình trụ: $64\pi.10=640\pi$ (cm3)
Theo đề bài ta có:
\(x_0+x_1=-a_1;x_0.x_1=b_1\)
\(x_0+x_2=-a_2;x_0.x_2=b_2\)
............................................
\(x_0+x_{2022}=-a_{2022};x_0.x_{2022}=b_{2022}\)
Ta có:
\(x_0+\alpha=x_0+\dfrac{x_1+x_2+...+x_{2022}}{2022}=\dfrac{\left(x_0+x_1\right)+\left(x_0+x_2\right)+...+\left(x_0+x_{2022}\right)}{2022}=-\dfrac{a_1+a_2+...+a_{2022}}{2022}\)\(x_0\alpha=x_0\dfrac{x_1+x_2+...+x_{2022}}{2022}=\dfrac{x_0x_1+x_0x_2+...+x_0x_{2022}}{2022}=\dfrac{b_1+b_2+...+b_{2022}}{2022}\)
Từ đây ta có được \(x_0;\alpha\)là 2 nghiệm của phương trình
\(x^2+\dfrac{a_1+a_2+...+a_{2022}}{2022}x+\dfrac{b_1+b_2+...+b_{2022}}{2022}=0\)
Bạn tự vẽ hình nhé. Mình tóm tắt cách giải:
1) Dễ thấy \(\widehat{BFC}=\widehat{BEC}=90^o\) nên tứ giác BFEC nội tiếp (2 đỉnh kề nhau cùng nhìn cạnh đối diện dưới 1 góc vuông)
2) Ta thấy \(\widehat{ABD}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow BD\perp AB\)
Lại có \(CH\perp AB\left(gt\right)\) nên \(BD//CH\)
Tương tự, ta dễ dàng chứng minh được \(CD//BH\)
Do đó tứ giác BHCD là hình bình hành \(\Rightarrow\) 2 đường chéo BC và DH cắt nhau tại trung điểm của mỗi đoạn.
Mà HD cắt BC tại M (gt) nên M là trung điểm của đoạn BC.
3) Sửa lại đề là \(AD\perp EF\) nhé
Kẻ tiếp tuyến Ax của (O) thuộc nửa mặt phẳng bờ OA chứa điểm B. Dễ thấy rằng \(\widehat{BAx}=\widehat{ACB}\) (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn \(\stackrel\frown{AB}\))
Tứ giác BFEC nội tiếp (cmt) \(\Rightarrow\widehat{AFE}=\widehat{ACB}\) (góc ngoài tại 1 đỉnh bằng góc trong tại đỉnh đối diện)
Từ đó \(\widehat{BAx}=\widehat{AFE}\) dẫn đến \(Ax//EF\) (2 góc so le trong bằng nhau)
Mà \(Ax\perp OA\) (do Ax là tiếp tuyến tại A của (O))
\(\Rightarrow OA\perp EF\) hay \(AD\perp EF\) (đpcm)
4)
Áp dụng BĐT Cô-si cho 2 số dương \(\dfrac{a^3}{b^2}\) và \(a\), ta có
\(\dfrac{a^3}{b^2}+a\ge2\sqrt{\dfrac{a^3}{b^2}.a}=2.\dfrac{a^2}{b}\)
Tương tự, ta có \(\dfrac{b^3}{c^2}+b\ge2.\dfrac{b^2}{c}\) và \(\dfrac{c^3}{a^2}+c\ge2.\dfrac{c^2}{a}\)
Cộng vế theo vế của các BĐT vừa tìm được, ta có:
\(\left(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\right)+\left(a+b+c\right)\ge2.\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)\)\(\Leftrightarrow\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge2\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)-\left(a+b+c\right)\) (1)
Áp dụng BĐT Cô-si cho 2 số dương \(b\) và \(\dfrac{a^2}{b}\), ta có:
\(\dfrac{a^2}{b}+b\ge2\sqrt{\dfrac{a^2}{b}.b}=2a\)
Tương tự, ta có \(\dfrac{b^2}{c}+c\ge2b\) và \(\dfrac{c^2}{a}+a\ge2c\)
Từ đó ta có \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+a+b+c\ge2a+2b+2c\) \(\Leftrightarrow a+b+c\le\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\)
Do đó, ta có \(2\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)-\left(a+b+c\right)\ge2\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)-\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)\)\(=\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\) (2)
Từ (1) và (2) suy ra đpcm. Dấu "=" xảy ra khi \(a=b=c\)