Tìm GTNN của biểu thức : A= 3x² + 9x - 7 . Giúp tớ với ạa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chiều cao ban đầu của HHCN:
2: 40 x 100 = 5(dm)
Đáp số: 5dm
Chất hữu cơ có 2 nguyên tố hóa học đốt cháy sinh ra CO2 và H2O
Vậy chất hữu cơ đó có CTPT là: CxHy (x, ý là số tự nhiên)
Vì 12x + y = 40
Mà: 40 = 12x + y ≤ 12x + 2x + 2 = 14x + 2
Nên x ≥ \(\dfrac{38}{14}\approx2,7\)
Mặt khác:
Mà: 40 = 12x + y ≥ 12x + 2x - 6 = 14x -6
Nên x ≤ \(\dfrac{46}{14}\approx3,29\)
Vậy x = 3 và y = 4
Thể tích bể:
50 x 50 x 80 = 50 x 4000 = 200000 (cm3) = 200 (dm3) = 200 (lít)
Mực nước cách thành bể là:
(200 - 150)x1000 : 50x50 = 50 000: 2 500 = 20 (cm)
Giả sử \(a\ge b\ge c\)
\(P=a+b+c=\left(a-5\right)+\left(b-4\right)+\left(c-3\right)+12\)
\(=\sqrt{\left(a-5\right)^2}+\sqrt{\left(b-4\right)^2}+\sqrt{\left(c-3\right)^2}+12\)
\(\ge\sqrt{\left(a-5\right)^2+\left(b-4\right)^2+\left(c-3\right)^2}+12\)
\(\ge12\)
ĐTXR \(\Leftrightarrow a=5;b=4;c=3\)
Vậy \(min_P=12\Leftrightarrow\left(a;b;c\right)=\left(5;4;3\right)\) hoặc các hoán vị
a) GỌi E là trung điểm của CD, chi ra ABED là hình vuônng và BEC là tam giác vuông cân.
Từ đó suy ra AB = AD = a, BC = 2a
Diện tích của hình thang ABCD là:
S = (AB+CD).AD2(��+��).��2 = (a+2a).a2(�+2�).�2 = 3a223�22
b) ˆADH���^ = ˆACD���^ (1) ( 2 góc nhọn có cặp cạnh tương ứng vuông góc)
Xét hai tam giác △△ADC và IBD vuông tại D và B có:
ADDC���� = IBBC���� = 1212, do đó hai tam giác ADC và IBD đồng dạng
Suy ra ˆACD���^ = ˆBDI���^ (2)
Từ (1), (2) ⇒⇒ ˆADH���^ = ˆBDI���^
Mà ˆADH���^ + ˆBDH���^ = 45o45� ⇒⇒ ˆBDI���^ = ˆBDH���^ = 45o45� hay ˆHDI���^ = 45o45�
Chúc bạn học tốtt
#𝗝𝘂𝗻𝗻
Câu 2: pt đã cho \(\Leftrightarrow x^3-3x^2+3x-1+x^3+x^3+3x^2+3x+1=x^3+6x^2+12x+8\)
\(\Leftrightarrow2x^3-6x^2-6x-8=0\)
\(\Leftrightarrow x^2-3x^2-3x-4=0\)
\(\Leftrightarrow\left(x-1\right)^3-6\left(x-1\right)-9=0\) (*)
Đặt \(x-1=t\) thì (*) trở thành \(t^3-6t-9=0\)
\(\Leftrightarrow t^3-9t+3t-9=0\)
\(\Leftrightarrow t\left(t^2-9\right)+3\left(t-3\right)=0\)
\(\Leftrightarrow\left(t-3\right)\left(t^2+3t\right)+3\left(t-3\right)=0\)
\(\Leftrightarrow\left(t-3\right)\left(t^3+3t+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=3\\t^2+3t+3=0\left(loại\right)\end{matrix}\right.\)
\(\Leftrightarrow x-1=3\)
\(\Leftrightarrow x=4\)
Vậy pt đã cho có nghiệm \(x=4\)
bài đấy thì em làm được rồi á. Chỉ là em đăng lên xem còn cách nào giải hay hơn thôi ạ...
Kích cỡ của bàn cờ là bao nhiêu vậy bạn. Nếu là 8x8 thì bàn này không có 2 số kề nhau nào có hiệu \(\ge\)9 đâu nhé.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |
49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 |
57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 |
Lê Song Phương bàn cờ kích cỡ 8x8 bạn ạ. Kề là chung đỉnh vs chung cạnh.
Tổng số tuổi của Minh và anh Minh là:
( 78 - 6 ) : 2 = 36 ( tuổi )
Số tuổi của ba Minh là:
36 + 6 = 42 ( tuổi )
Số tuổi của Minh là:
42 - 26 = 16 ( tuổi )
Đáp số: 16 tuổi
a | b | c | d | e | |
5 | |||||
4 | |||||
3 | |||||
2 | |||||
1 |
Ta đánh dấu bảng 5x5 như trên và không mất tính tổng quát, giả sử quân mã ban đầu ở vị trí a1. Khi đó một đường đi của quân mã để đi hết tất cả các ô trên bàn cờ (với điều kiện mỗi ô chỉ được đi qua 1 lần) là:
a1-c2-e1-d3-e5-c4-a5-b3-c1-e2-d4-b5-a3-b1-d2-e4-c5-a4-b2-d1-e3-d5-b4-a2-c3.
cái này đúng rồi á chị nhưng mà nhìn bàn cờ nó cũng cứ kiểu gì ấy....
Hì hì...
A = 3\(x^2\) + 9\(x\) - 7
A = 3.(\(x^2\) + 3\(x\) + \(\dfrac{9}{4}\)) - 7
A = 3.(\(x\) + \(\dfrac{3}{2}\))2 - \(\dfrac{55}{4}\)
Vì (\(x\) + \(\dfrac{3}{2}\))2 ≥ 0; ⇒ 3.(\(x\) + \(\dfrac{3}{2}\))2 - \(\dfrac{55}{4}\) ≥ - \(\dfrac{55}{4}\)
A(min) = - \(\dfrac{55}{4}\) ⇔ \(x\) + \(\dfrac{3}{2}\) = 0 ⇔ \(x\) = - \(\dfrac{3}{2}\)