B=(2x-y)x(4a^2+2xy+x^2)-8x^3+y^3+2023 .chứng minh nó không phụ thuộc biến
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(-5x^2\right)y^2.\dfrac{1}{5}xy\)
\(=\left(-5x^2y^2\right).\dfrac{1}{5}xy\)
\(=-x^3y^3\)
`@` `\text {Ans}`
`\downarrow`
\(3(x^2+2x-3)+3(-x^2-4x)\)
`= 3*(x^2+2x-3 - x^2 - 4x)`
`= 3*[(x^2-x^2)+(2x-4x)-3]`
`= 3*(-2x-3)`
`= -6x-9`
3(x² + 2x - 3) + 3(-x² - 4x)
= 3x² + 6x - 9 - 3x² - 12x
= (3x² - 3x²) + (6x - 12x) - 9
= -6x - 9
Với x, y là hai số dương, dễ dàng chứng minh x + y 2,
do x + y = 2 => 0 < xy ≤ 1 (1)
Ta lại có: 2xy( x2 + y2) ≤
=> 0 < 2xy(x2 + y2) ≤ (x+y)4/4 = 4
=> 0 < xy( x2 + y2) ≤ 2 (2)
Nhân (1) với (2) theo vế ta có: x2y2 ( x2 + y2) ≤ 2 (đpcm)
Dấu “=” xảy ra khi x = y = 1
Câu 1:
Ta thấy \(S_2=\dfrac{\sqrt{3}+S_1}{1-\sqrt{3}S_1}=\dfrac{\sqrt{3}+1}{1-\sqrt{3}}=\dfrac{\left(1+\sqrt{3}\right)^2}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}\)\(=\dfrac{4+2\sqrt{3}}{-2}=-2-\sqrt{3}\)
Từ đó \(S_3=\dfrac{\sqrt{3}+S_2}{1-\sqrt{3}S_2}=\dfrac{\sqrt{3}-2-\sqrt{3}}{1-\sqrt{3}\left(-2-\sqrt{3}\right)}=\dfrac{-2}{4+2\sqrt{3}}=\dfrac{1}{-2-\sqrt{3}}\)
và \(S_4=\dfrac{\sqrt{3}+S_3}{1-\sqrt{3}S_3}=\dfrac{\sqrt{3}+\dfrac{1}{-2-\sqrt{3}}}{1-\dfrac{\sqrt{3}}{-2-\sqrt{3}}}=\dfrac{-2\sqrt{3}-3+1}{-2-\sqrt{3}-\sqrt{3}}=1\)
Đến đây ta thấy \(S_4=S_1\). Cứ tiếp tục làm như trên, ta rút ra được:
\(S_{3k+1}=1\); \(S_{3k+2}=-2-\sqrt{3}\) và \(S_{3k+3}=\dfrac{1}{-2-\sqrt{3}}\), với \(k\inℕ\)
Ta tính số các số thuộc mỗi dạng \(S_{3k+i}\left(i=1,2,3\right)\) từ \(S_1\) đến \(S_{2017}\).
- Số các số hạng có dạng \(S_{3k+1}\) là \(\left(2017-1\right):3+1=673\) số
- Số các số hạng có dạng \(S_{3k+2}\) là \(\left(2015-2\right):3+1=672\) số
- Số các số hạng có dạng \(S_{3k+3}\) là \(\left(2016-3\right):3+1=672\) số
Như thế, tổng S có thể được viết lại thành
\(S=\left(S_1+S_4+...+S_{2017}\right)+\left(S_2+S_5+...+S_{2015}\right)+\left(S_3+S_6+...+S_{2016}\right)\)
\(S=613+612\left(-2-\sqrt{3}\right)+612\left(\dfrac{1}{-2-\sqrt{3}}\right)\)
Tới đây mình lười rút gọn lắm, nhưng ý tưởng làm bài này là như vậy.
Có \(\left(x-\sqrt{x^2+5}\right).\left(y-\sqrt{y^2+5}\right)=5\) (1)
\(\Leftrightarrow\dfrac{\left(x-\sqrt{x^2+5}\right).\left(x+\sqrt{x^2+5}\right)}{x+\sqrt{x^2+5}}.\dfrac{\left(y-\sqrt{y^2+5}\right).\left(y+\sqrt{y^2+5}\right)}{y+\sqrt{y^2+5}}=5\)
\(\Leftrightarrow\left(x+\sqrt{x^2+5}\right).\left(y+\sqrt{y^2+5}\right)=5\) (2)
Từ (1) và (2) ta có \(\left(x-\sqrt{x^2+5}\right).\left(y-\sqrt{y^2+5}\right)=\left(x+\sqrt{x^2+5}\right).\left(y+\sqrt{y^2+5}\right)\)
\(\Leftrightarrow x\sqrt{y^2+5}+y\sqrt{x^2+5}=0\)
\(\Leftrightarrow x^2\left(y^2+5\right)=y^2\left(x^2+5\right)\left(y\le0;x\ge0\right)\)
\(\Leftrightarrow x^2-y^2=0\Leftrightarrow\left[{}\begin{matrix}x=y\left(\text{loại}\right)\\x=-y\left(\text{nhận}\right)\end{matrix}\right.\)
Khi đó M = x3 + y3 = 0
N = x2 + y2 = 2y2
Ta biến đổi \(A=\dfrac{2-1}{1.2}+\dfrac{4-3}{3.4}+...+\dfrac{2016-2015}{2016.2015}+\dfrac{2018-2017}{2017.2018}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}+\dfrac{1}{2017}-\dfrac{1}{2018}\)
\(A=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2017}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2018}\right)\)
\(A=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2017}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2018}\right)\)
\(A=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2017}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1009}\right)\)
\(A=\dfrac{1}{1010}+\dfrac{1}{1011}+...+\dfrac{1}{2017}+\dfrac{1}{2018}\)
Lại có \(B=\dfrac{1}{1010.2018}+\dfrac{1}{1011.2017}+...+\dfrac{1}{2018.1010}\)
\(B=\dfrac{1}{3028}.\left(\dfrac{3028}{1010.2018}+\dfrac{3028}{1011.2017}+...+\dfrac{3028}{2018.1010}\right)\)
\(B=\dfrac{1}{3028}\left(\dfrac{1}{1010}+\dfrac{1}{2018}+\dfrac{1}{1011}+\dfrac{1}{2017}+...+\dfrac{1}{2018}+\dfrac{1}{1010}\right)\)
\(B=\dfrac{1}{3028}.2\left(\dfrac{1}{1010}+\dfrac{1}{1011}+...+\dfrac{1}{2018}\right)\)
\(B=\dfrac{1}{3028}.2A\) \(\Rightarrow\dfrac{A}{B}=1514\inℤ\). Ta có đpcm
Sửa: `+12y^2 -> -12y^2`
\(7x^2-5xy-12y^2\\ =7x^2+7xy-12xy-12y^2\\ =7x\left(x+y\right)-12y\left(x+y\right)\\ =\left(7x-12y\right)\left(x+y\right)\)
a) chứng minh \(\Delta ABC=\Delta ADC\)
xét 2 tam giác vuông ABC và ADC:
có AC: cạnh chung
AD=AB (gia thiết)
=> \(\Delta ABC=\Delta ADC\) (2cgv)
b) chứng minh DC//BE
xét tứ giác BEDC có 2 đường chéo BD và EC cắt nhau tại trung điểm A của mỗi đường => tứ giác BEDC là hình bình hành => DC//BE
c) chứng minh BE = 2AI
ta có BEDC là hình bình hành => BE=DC
lại có tam giác DAC vuông tại A => đường trung tuyến AI bằng một nửa cạnh huyền, tức là \(AI=\dfrac{1}{2}DC\) hay \(DC=2.AI\) hay \(BE=2.AI\)
chúc em học tốt
Cậu tự vẽ hình nhé.
a, Xét \(\Delta ABC\) vuông tại A và \(\Delta ADC\) vuông tại A có:
AB = AD(gt)
AC chung
\(\Rightarrow\Delta ABC=\Delta ADC\left(ch-cgv\right)\)
b, Ta có \(DB\perp EC\) tại \(A\)
mà \(DA=AB\left(gt\right)\)
\(AE=AC\left(gt\right)\)
\(\Rightarrow\) Tứ giác DCBE là hình thoi ( 2 đường chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường )
\(\Rightarrow DC//BE\) ( tính chất hình thoi )
c, Xét \(\Delta DAC\) vuông tại A có:
I là trung điểm của DC
\(\Rightarrow AI=DI=IC=\dfrac{1}{2}DC\)
\(\Rightarrow2AI=DC\)
Lại có DC = EB ( DCBE là hình thoi )
\(\Rightarrow2AI=BE\)
Sửa đề : \(\left(2x-y\right)\left(4x^2+2xy+y^2\right)-8x^3+y^3+2023\)
\(=\left(2x\right)^3-y^3-8x^3+y^3+2023\\ =8x^3-y^3-8x^3+y^3+2023=2023\)
Do `2023` không phụ thuộc vào biến
Vậy nên bt B không phụ thuộc vào biến (DPCM)