a) Thu gọn rồi xác định phần hệ số, phần biến, bậc của các đơn thức sau:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đáp án:
a)
Pytago:AB2+AC2=BC2⇒AC2=102−52=75⇒AC=5√3(cm)Pytago:AB2+AC2=BC2⇒AC2=102−52=75⇒AC=53(cm)
b) Xét ΔABD và ΔEBD vuông tại A và E có:
+góc ABD = góc EBD
+ BD chung
=>ΔABD = ΔEBD (cg-gn)
c) Xét ΔABC và ΔEBF vuông tại A và E có:
+ AB = EB (do ΔABD = ΔEBD)
+ góc ABC chung
=>ΔABC = ΔEBF (cgv-gn)
d) Do ΔABC = ΔEBF nên BC = BF
Xét ΔBFG và ΔBCG có:
+ BF = BC
+ BG chung
+ FG = CG
=> ΔBFG = ΔBCG (c-c-c)
=> góc FBG = góc CBG
=> BG là phân giác của góc ABC
=> BG đi qua D
=> AC,BG, EF đồng quy tại D.
a)
Pytago:AB2+AC2=BC2⇒AC2=102−52=75⇒AC=5√3(cm)Pytago:AB2+AC2=BC2⇒AC2=102−52=75⇒AC=53(cm)
b) Xét ΔABD và ΔEBD vuông tại A và E có:
+góc ABD = góc EBD
+ BD chung
=>ΔABD = ΔEBD (cg-gn)
c) Xét ΔABC và ΔEBF vuông tại A và E có:
+ AB = EB (do ΔABD = ΔEBD)
+ góc ABC chung
=>ΔABC = ΔEBF (cgv-gn)
d) Do ΔABC = ΔEBF nên BC = BF
Xét ΔBFG và ΔBCG có:
+ BF = BC
+ BG chung
+ FG = CG
=> ΔBFG = ΔBCG (c-c-c)
=> góc FBG = góc CBG
=> BG là phân giác của góc ABC
=> BG đi qua D
=> AC,BG, EF đồng quy tại D.

Ta có: \(\left|2x-4\right|\ge0\forall x\)
\(\left|3y+9\right|\ge0\forall y\)
\(\Rightarrow C\le-15-0-0=-15\)
Dấu '=' xảy ra <=> \(\hept{\begin{cases}2x-4=0\\3y+9=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)


Thay x=2 vào nghiệm của đa thức f(x) ta có:
f(2)=a.22-a.2=0
=>4a-2a+10=0
=>2a+10=0
=>2a=0-10=-10
=>a=-10:2=-5
Vậy a=-5 tại x=2 là 1 nghiệm của đa thức f(x)

a) A = x^3 + 6x^2y + 12xy^2 + 8y^3
=> A = ( x + 2y )^3
Thay x + 2y = -5 vào A
=> A = ( -5 )^3 = -125
Vậy khi x + 2y = -5 thì A = -125
b) B = 8x^3 - 12x^2y + 6xy^2 - y^3
=> B = ( 2x - y )^3
Thay 2x - y = 1/5 vào A
=> A = ( 1/5 )^3 = 1/125
Vậy khi 2x - y = 1/5 thì B = 1/125
c) C = x^3 + 3x^2 + 3x + 1
=> C = ( x + 1 )^3
Thay x = 99 vào C
=> C = ( 99 + 1 )^3 = 100^3 = 1000000
Vậy khi x = 99 thì C = 1000000

\(A\left(x\right)=6x^3-x\left(x+2\right)+4\left(x+3\right)\)
\(A\left(x\right)=6x^3-x^2+2x+4x+12\)
\(A\left(x\right)=6x^3-x^2+\left(2x+4x\right)+12\)
\(A\left(x\right)=6x^3-x^2+6x+12\)
\(B\left(x\right)=-x\left(x+1\right)-\left(4-3x\right)+x^2\left(x-2\right)\)
\(B\left(x\right)=-\left(x^2\right)+2-4+3x+x^3-2x^2\)
\(B\left(x\right)=\left(-x^2-2x^2\right)+\left(2-4\right)+3x+x^3\)
\(B\left(x\right)=-3x^2-2+3x+x^3\)
Sửa lại cho Bạn Vũ Đình Phước nhé :v
A (x) = 6x3 – x (x + 2) + 4 (x + 3)
= 6x3 – x2 - 2x + 4x + 12
= 6x3 – x2 + 2x + 12