K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2022

\(ĐKXĐ:x\ge3\)

\(\sqrt{x-3+4\sqrt{x-3}+4}+\sqrt{x-3-4\sqrt{x-3}+4}=x-11\)

\(\sqrt{\left(\sqrt{x-3}+2\right)^2}+\sqrt{\left(\sqrt{x-3}-2\right)^2}=x-11\)

\(\sqrt{x-3}+2+\sqrt{x-3}-2=x-11\)

\(2\sqrt{x-3}=x-11\)

\(4\left(x-3\right)=\left(x-11\right)^2\)

\(4x-12=x^2-22x+121\)

\(x^2-26x+133=0\)

\(\left(x-19\right)\left(x-7\right)=0\)

\(\left[{}\begin{matrix}x=19\left(TM\right)\\x=7\left(TM\right)\end{matrix}\right.\)

15 tháng 7 2022

Ta có: \(A=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)

\(\Rightarrow A^3=5\sqrt{2}+7-5\sqrt{2}+7-3\left(5\sqrt{2}+7\right)\left(5\sqrt{2}-7\right)\left(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\right)\)

\(=14-3\left(50-49\right)A\)

\(\Rightarrow A^3=14-3A\Leftrightarrow A^3+3A-14=0=\left(A-2\right)\left(A^2+2A+7\right)=0\)

\(\Leftrightarrow A-2=0\Leftrightarrow A=2\)

=> Đpcm

15 tháng 7 2022

a) Áp dụng hệ thức lượng vào tam giác vuông ABC, ta có: 

\(AB^2=BH.BC=BH\left(BH+HC\right)=3,6\left(3,6+6,4\right)=3,6.10=36\)

\(\Rightarrow AB=\sqrt{36}=6\)(cm)

\(AC^2=HC.BC=HC\left(BH+HC\right)=6,4\left(3,6+6,4\right)=6,4.10=64\)

\(\Rightarrow AC=\sqrt{64}=8\left(cm\right)\)

\(AH^2=HB.HC=3,6.6,4=23,04\)

\(\Rightarrow AH=\sqrt{23,04}=4,8\left(cm\right)\)

b) Xét tứ giác AEHF có 3 góc vuông: \(\widehat{EAF};\widehat{AEH};\widehat{HFA}\)

=> Tứ giác AEHF là hình chữ nhật

=> EF=AH=4,8(cm)

c) Áp dụng hệ thức lượng vào tam giác vuông AHB, ta có:

\(AH^2=AE=AB\)(1)

Áp dụng hệ thức lượng vào tam giác vuông AHC, ta có:

\(AH^2=AF.AC\left(2\right)\)

Từ (1) và (2) suy ra: AE.AB=AF.AC

d) Theo kết quả câu c: \(AE.AB=AF.AC\Rightarrow\dfrac{AE}{AF}=\dfrac{AC}{AB}\)

Xét \(\Delta AEF\) và \(\Delta ACB:\)

\(\widehat{EAF}=\widehat{BAC}=90^o\)

\(\dfrac{AE}{AF}=\dfrac{AC}{AB}\left(cmt\right)\)

\(\Rightarrow\Delta AEF~\Delta ACB\left(c-g-c\right)\)