K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2023

\(x^2+y^2+z^2=xy+yz+zx\)

=> \(2x^2+2y^2+2x^2=2xy+2yz+2zx\) 

=> \(2x^2+2y^2+2x^2-2xy-2yz-2zx=0\) 

=> \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\) 

=> x -y =0 ; y - z=0 ; z - x=0

=> x =y; y =z; z=x

=> x=y=z

5 tháng 7 2023

\(a+b+c+d=0\Rightarrow a+b=-\left(c+d\right)\)

\(\Rightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)

\(\Rightarrow\left(a+b\right)^3+\left(c+d\right)^3=0\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)+c^3+d^3+3cd\left(c+d\right)=0\)

\(\Rightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)

\(\Rightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\) (do \(a+b=-\left(c+d\right)\)

\(\Rightarrow a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\)

5 tháng 7 2023

\(25x^2-10xy+y^2=\left(5x\right)^2-2.5x.y+y^2=\left(5x-y\right)^2\)

\(\dfrac{4}{9}x^2+\dfrac{20}{3}xy+25y^2=\left(\dfrac{2}{3}x\right)^2+2.\dfrac{2}{3}x.5y+\left(5y\right)^2=\left(\dfrac{2}{3}x+5y\right)^2\)

 

6 tháng 7 2023

 Điều kiện \(0< x\le120\)

 Số tiền thu được khi bán \(120-x\) món quà là \(x\left(120-x\right)=-x^2+120x\)

 Lợi nhuận thu được là \(-x^2+120x-40x=-x^2+80x\)

 Ta quy về bài toán tìm giá trị lớn nhất của hàm số \(f\left(x\right)=-x^2+80x\). Ta thấy \(f\left(x\right)=-\left(x^2-80x+1600\right)+1600\) \(=-\left(x-40\right)^2+1600\) \(\le1600\). Dấu "=" xảy ra khi và chỉ khi \(x-40=0\Leftrightarrow x=40\) (nhận)

 Như vậy, giá bán một món quà ở đợt này nên là 40 nghìn đồng để lợi nhuận thu được là cao nhất.

5 tháng 7 2023

A) -2x(3x+2)(3x-2)+5(x+2)2 - (x-1)(2x+1)(2x+1)

= -2x(9x2-4)+5(x2+4x+4) - (x-1)(4x2-1)

= -18x3+8x+5x2+20x+20-(4x3-x-4x2+1)

= -18x3+5x2+28x+20-4x3+x+4x2+1

= -22x3+9x2+29x+21

B) (7x-8)(7x+8)-10(2x+3)2+5x(3x-2)2-4x(x-5)2

= 49x2 - 64 -10(4x2+ 12x + 3) + 5x(9x2 - 12x +4) - 4x(x2 - 10x +25)

= 49x2 - 64 -40x2 - 120x - 30 + 45x3 - 60x2 - 20x - 4x3 + 40x2 -100x

= 41x3 -11x2 -240x -94

6 tháng 7 2023

C) \(\left(x^2-3\right)\left(x^2+3\right)-5x^2\left(x+1\right)^2-\left(x^2-3x\right)\left(x^2-2x\right)+4x\left(x+2\right)^2\)

\(\left(x^4-9\right)-5x^2\left(x^2+2x+1\right)-\left(x^4-2x^3-3x^3+6x^2\right)+4x\left(x^2+4x+4\right)\)

\(x^4-9-5x^4-10x^3-5x^2-x^4+5x^3-6x^2+4x^3+16x^2+16x\)

\(-5x^4-x^3+5x^2+20x-9\)

D) \(-6x^2\left(x+5\right)^2-\left(x-3\right)^2+\left(x^2-2\right)\left(2x^2+1\right)-4x^2\left(3x-4\right)^2\)

\(-6x^2\left(x^2+10x+25\right)-\left(x^2-6x+9\right)+2x^4-3x^2-2-4x^2\left(9x^2-24x+16\right)\)

\(-6x^4-60x^3+150x^2-x^2+6x-9+2x^4-3x^2-2-36x^4+96x^3-64x^2\)

\(-40x^4+36x^3+82x^2+6x-11\)

5 tháng 7 2023

ABCD là hình bình hành\(\Rightarrow\left\{{}\begin{matrix}AB=CD\\AB//CD\end{matrix}\right.\)

\(AB//CD\Rightarrow BE//DF\)

E, F lần lượt là trung điểm của các cạnh AB,CD\(\Rightarrow\left\{{}\begin{matrix}BE=\dfrac{1}{2}AB\\DF=\dfrac{1}{2}DC\end{matrix}\right.\Rightarrow BE=DF\) (do AB = CD)

Xét tứ giác BEDF có BE // DF, BE = DF

\(\Rightarrow BEDF\) là hình bình hành \(\Rightarrow BF=DE\)

 

CT
6 tháng 7 2023

Bài yêu cầu gì em?

DT
5 tháng 7 2023

\(-x^2+6x-11=-\left(x^2-6x\right)-11\\ =-\left(x^2-6x+9\right)-11+9\\ =-\left(x-3\right)^2-2\le-2\forall x\)

Dấu "=" xảy ra khi : `x-3=0<=>x=3`

Vậy max = -2 tại x=3

`@` `\text {Ans}`

`\downarrow`

`1.`

`3x^2y - 7x^2y + 5x^2y`

`= (3 - 7 + 5)x^2y`

`= x^2y`

`2.`

`-7x^3y^4 + 4x^3y^4 - 2x^3y^4`

`= (-7+4-2) x^3y^4`

`= -5x^3y^4`

`3.`

`4xy^5 - 8xy^5 + 4xy^5`

`= (4 - 8 + 4) xy^5`

`= 0xy^5`

`= 0`

`4.`

`5x^5y^7 - 8x^5y^7 - 2x^5y^7`

`= (5 - 8 - 2) x^5y^7`

`= -5x^5y^7`

`5.`

`9x^2y^5 - 12x^2y^5 + x^2y^5`

`= (9 - 12 + 1)x^2y^5`

`= -2x^2y^5`

Dạ ban nãy em sửa rồi ạ.

`@` `\text {Ans}`

`\downarrow`

\((x+y)(x-y)+(xy^4-x^3y^2) \div (xy^2) \)

`= x(x-y) + y(x-y) + xy^4 \div xy^2 - x^3y^2 \div xy^2`

`= x^2 - xy + xy - y^2 + y^2 - x^2`

`= (x^2 - x^2) + (-xy + xy) + (-y^2 + y^2)`

`= 0`