(1 điểm) Cho $ {x}, {y}, {z} \neq 0$ và $\dfrac{x+2 y-z}{z}=\dfrac{y+2 z-x}{x}=\dfrac{z+2 x-y}{y}$.
Tính $P=\left(\dfrac{x}{y}+2\right)\left(\dfrac{y}{z}+2\right)\left(\dfrac{z}{x}+2\right)$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7 tấn 36kg = 7,036 tấn
\(\Rightarrow\)7 tấn = 7 tấn
\(\Rightarrow\)36 kg = 0,036 tấn
\(\Rightarrow\)7 + 0,036 = 7,036 tấn
Đúng cho like nhé
\(3S=241+81+27+9+...+\dfrac{1}{9}+\dfrac{1}{27}\)
\(2S=3S-S=241-\dfrac{1}{81}=\dfrac{241x81-1}{81}\)
\(\Rightarrow S=\dfrac{241x81-1}{2x81}\)
a/
\(Ax\perp m\left(gt\right);By\perp m\left(gt\right)\) => Ax//By (cùng vuông góc với m)
Mà Cz//Ax (gt)
=> Cz//By (cùng // với Ax)
b/
\(\widehat{BCz}=\widehat{ACB}-\widehat{C}=110^o-30^o=80^o\)
Ta có
Cz//By (cmt) \(\Rightarrow\widehat{BCz}=\widehat{CBy}=80^o\) (góc so le trong)
c/
\(CD\perp Ax\left(gt\right)\Rightarrow\widehat{ADC}=90^o\)
Cz//Ax (gt) \(\Rightarrow\widehat{A}=\widehat{C}=30^o\) (Góc so le trong)
Xét tg vuông ACD có
\(\widehat{ACD}=\widehat{ADC}-\widehat{A}=90^o-30^o=60^o\)
Dễ mà thầy! Bài giải.
số tiền Tùng nhận được là : 1,5:6=0,25(đồng).
số tiền Huy nhận được là : 1,5:4=0,375(đồng).
số tiền Minh nhận được là: 1,5:5=0,3(đồng)
a, \(\dfrac{5}{2}\)\(x\) - \(\dfrac{3}{4}\) = \(\dfrac{1}{4}\)
\(\dfrac{5}{2}\)\(x\) = \(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)
\(\dfrac{5}{2}\)\(x\) = 1
\(x\) = 1: \(\dfrac{5}{2}\)
\(x\) = \(\dfrac{2}{5}\)
b, \(\dfrac{x+4}{20}\) = \(\dfrac{5}{x+4}\) (đk \(x\) ≠ -4)
(\(x\)+4).(\(x\) + 4) = 20.5
(\(x\)+ 4)2 = 100
(\(x\) + 4)2 = 102
\(\left[{}\begin{matrix}x+4=-10\\x+4=10\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-10-4\\x=10-4\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-14\\x=6\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-14; 6}
Lời giải:
$55^{n+1}-55^2=55^2[55^{n-1}-1]=55^2(55-1)(55^{n-2}+55^{n-3}+...+55+1)$
$=54.55^2(55^{n-2}+55^{n-3}+...+55+1)\vdots 54$
Ta có đpcm.
\(P=\left(\dfrac{x+2y}{y}\right)\left(\dfrac{y+2z}{z}\right)\left(\dfrac{z+2x}{x}\right)\)
Ta có
\(\dfrac{x+2y-z}{z}=\dfrac{y+2z-x}{x}=\dfrac{z+2x-y}{y}=\)
\(=\dfrac{x+2y-z+y+2z-x+z+2x-y}{x+y+z}=\)
\(=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\dfrac{x+2y}{z}-1=\dfrac{y+2x}{x}-1=\dfrac{z+2x}{y}-1=2\)
\(\Rightarrow\dfrac{x+2y}{z}=\dfrac{y+2x}{x}=\dfrac{z+2x}{y}=3\)
\(\Rightarrow P=3.3.3=27\)