Cho a,b,c thỏa mãn:\(a^2+b^2+c^2=ab+bc+ca\) và \(a^{2019}+b^{2019}+c^{2019}=3^{2020}\)
Tính \(A=\left(a-2\right)^{2017}+\left(b-3\right)^{2018}+\left(c-4\right)^{2019}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề đúng: \(M=\left(a^2+b^2-c^2\right)^2-4a^2b^2\)
a) Ta có:
\(M=\left(a^2+b^2-c^2\right)^2-4a^2b^2\)
\(M=\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)\)
\(M=\left[\left(a^2-2ab+b^2\right)-c^2\right]\left[\left(a^2+2ab+b^2\right)-c^2\right]\)
\(M=\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]\)
\(M=\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)\)
b) Nếu a,b,c là độ dài 3 cạnh của tam giác thì:
\(\hept{\begin{cases}a+b>c\\c+a>b\\b+c>a\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b-c>0\\a-b+c>0\\a-b-c< 0\end{cases}}\) , mà a + b + c > 0
=> \(M< 0\)
\(x^4+2016x^2+2017x+2016\)
\(=x^4+2016x^2+2016x+x+2016\)
\(=\left(x^4+x\right)+\left(2016x^2+2016x+2016\right)\)
\(=x\left(x^3+1\right)+2016\left(x^2+x+1\right)\)
\(=x\left(x+1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2+x+2016\right)\)
=> \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4< =>\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4< =>\)2 + \(2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4< =>\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1< =>\frac{a+b+c}{abc}=1< =>\)a+b+c=abc
điều kiện ban đầu <=> (x-1)2+(y-2)2+(z-3)2 \(\le1\)
áp dụng bdt sau (ax+ by+ cz)2\(\le\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)(bunhiacopxky với 3 số)
[ x-1 + 2(y-2) + 2(z-3)]2 \(\le\left(1^2+2^2+2^2\right)\left[\left(x-1\right)^2+\left(y-2\right)^2+\left(z-2\right)^2\right]\le9.1=9\)
=>\(-3\le\) x-1 +2(y-2) +2(z-3) \(\le3\) <=> 8\(\le x+2y+2z\le14\)
a) 4x2 - 20x + 25 - 36y2
= (2x - 5)2 - 36y2
= (2x - 5 - 6y)(2x - 5 + 6y)
b) x3 + x2 - 2x - 8
= (x3 - 8) + (x2 - 2x)
= (x - 2)(x2 + 2x + 4) + x(x - 2)
= (x - 2)(x2 + 2x + 4 + x)
= (x - 2)(x2 + 3x + 4)
d) x4 + 6x3 + 9x2 - 16
= x2(x2 + 6x + 9) - 16
= x2(x + 3)2 - 16
= (x2 + 3x)2 - 16
= (x2 + 3x - 4)(x2 + 3x + 4)
= (x2 + 4x - x - 4)(x2 + 3x + 4)
= [x(x + 4) - (x + 4)](x2 + 3x + 4)
= (x - 1)(x + 4)(x2 + 3x + 4)
<=> \(2a^2+2b^2+2c^2=2ab+2bc+2ca< =>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0< =>\)
a=b=c => 32020 = 3.a2019 <=> 32019 = a2019 => a=b=c=3
A= 12017 + 02018 + (-1)2019 = 0