Cho hình bình hành ABCD có AB < AD. Kẻ CE vuông góc với AB tại E, CF vuông góc với AD tại F, BI vuông góc với AC tại I.
a) Chứng minh: ∆ΑΙΒ ~ ΔΑΕC và AB.AE = AI.AC
b) Chứng minh: ∆CBI ~ ∆ACF và AB.AE + AF.CB = AC^2
c) Chứng minh: góc CEF = góc BCA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔBHA~ΔBAC
=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\)
=>\(BA^2=BH\cdot BC\)
b: Xét ΔAMH vuông tại M và ΔAHB vuông tại H có
\(\widehat{MAH}\) chung
Do đó: ΔAMH~ΔAHB
=>\(\dfrac{AM}{AH}=\dfrac{AH}{AB}\)
=>\(AM\cdot AB=AH^2\)
Xét ΔANH vuông tại N và ΔAHC vuông tại H có
\(\widehat{NAH}\) chung
Do đó: ΔANH~ΔAHC
=>\(\dfrac{AN}{AH}=\dfrac{AH}{AC}\)
=>\(AN\cdot AC=AH^2\)
Do đó: \(AM\cdot AB=AN\cdot AC\)
=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Xét ΔAMN vuông tại A và ΔACB vuông tại A có
\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Do đó: ΔAMN~ΔACB
c: O là trung điểm của BC
mà ΔABC vuông tại A
nên OA=OB=OC
OA=OC nên ΔOAC cân tại O
ΔANM~ΔABC
=>\(\widehat{ANM}=\widehat{ABC}\)
\(\widehat{ANM}+\widehat{OAC}=\widehat{ACB}+\widehat{ABC}=90^0\)
=>MN\(\perp\)AO tại I
1. C
Cu không thể phản ứng với dung dịch HCl và H2SO4 loãng.
2. B
Các base không tan như Zn(OH)2 , Mg(OH)2, Ba(OH)2 và Fe(OH)3 không làm phenol phthalein hóa đỏ
a: Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình của ΔABC
=>DE//BC và BC=2DE
b: Xét ΔAFB có
D là trung điểm của AB
DI//FB
Do đó: I là trung điểm của AF
Xét ΔAFB có ID//FB
nên \(\dfrac{ID}{FB}=\dfrac{AD}{AB}=\dfrac{1}{2}\)
Xét ΔAFC có IE//FC
nên \(\dfrac{IE}{FC}=\dfrac{AE}{AC}=\dfrac{1}{2}\)
Do đó: \(\dfrac{ID}{FB}=\dfrac{IE}{FC}\)
mà ID=IE(I là trung điểm của DE)
nên FB=FC
=>F là trung điểm của BC
Xét tứ giác AEFD có
I là trung điểm chung của AF và ED
=>AEFD là hình bình hành
Hình bình hành AEFD có \(\widehat{EAD}=90^0\)
nên AEFD là hình chữ nhật
c: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(DE=\dfrac{1}{2}BC=\dfrac{1}{2}\cdot10=5\left(cm\right)\)
I là trung điêm của DE
=>ID=IE=DE/2=2,5(cm)
=>AI=ED/2=2,5(cm)
ΔABC vuông tại A
mà AF là đường trung tuyến
nên AF=BC/2=5(cm)
Xét ΔABC có
BE,AF là các đường trung tuyến
BE cắt AF tại K
Do đó: K là trọng tâm của ΔABC
=>\(AK=\dfrac{2}{3}AF=\dfrac{2}{3}\cdot5=\dfrac{10}{3}\left(cm\right)\)
AI+IK=AK
=>\(IK+2,5=\dfrac{10}{3}\)
=>\(IK=\dfrac{10}{3}-\dfrac{5}{2}=\dfrac{20}{6}-\dfrac{15}{6}=\dfrac{5}{6}\left(cm\right)\)
\(n_{H_2}\)= \(\dfrac{0,756}{24,79}\) = 0,0305 mol
PTHH:
Mg + 2HCl → MgCl2 + H2
Al + 3HCl → AlCl3 + \(\dfrac{3}{2}\)H2
Gọi số mol của Mg và Al lần lượt là x và y.
Ta có hệ phương trình
\(\left\{{}\begin{matrix}24x+27y=0,615\\x+1,5y=0,0305\end{matrix}\right.\)↔\(\left\{{}\begin{matrix}x=0,011\\y=0,013\end{matrix}\right.\)
⇒ mMg = 0,11 . 24 = 0,264 gam
⇒ %Mg = \(\dfrac{0,264}{0,615}\) . 100 = 43%
a: Để (d) có hệ số góc bằng -2 thì m-1=-2
=>m=-1
b: Thay x=-3 và y=0 vào (d), ta được:
\(-3\left(m-1\right)+2m=0\)
=>-3m+3+2m=0
=>3-m=0
=>m=3
c: Thay x=0 và y=2 vào (d), ta được:
0(m-1)+2m=2
=>2m=2
=>m=1
d: Để (d)//(d1) thì \(\left\{{}\begin{matrix}m-1=-3\\2m\ne4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-2\\m\ne2\end{matrix}\right.\)
=>m=-2
a) Tìm để có hệ số góc bằng -2.
Hệ số góc của đường thẳng là . Để có hệ số góc bằng -2, ta giải phương trình:
b) Tìm để cắt trục hoành tại điểm có hoành độ bằng -3.
Khi cắt trục hoành, , từ đó:
c) Tìm để cắt trục tung tại điểm có tung độ bằng 2.
Khi cắt trục tung, , khi đó:
\(\Rightarrow\)
d) Tìm để song song với đường thẳng : .
Đường thẳng sẽ song song với nếu hệ số góc của bằng hệ số góc của
Kết luận:
a)
b) 3/5
c)
d)
a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)
Do đó: ΔAHB~ΔCHA
b: Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}=90^0\)
\(\widehat{BDA}+\widehat{DAH}=90^0\)(ΔDAH vuông tại H)
mà \(\widehat{CAD}=\widehat{DAH}\)
nên \(\widehat{BAD}=\widehat{BDA}\)
=>ΔBAD cân tại B
ΔBAD cân tại B
mà BF là đường phân giác
nên BF\(\perp\)AD tại F
Xét ΔEFA vuông tại F và ΔEHB vuông tại H có
\(\widehat{FEA}=\widehat{HEB}\)(hai góc đối đỉnh)
Do đó: ΔEFA~ΔEHB
=>\(\dfrac{EF}{EH}=\dfrac{EA}{EB}\)
=>\(EF\cdot EB=EA\cdot EH\)
c: Xét ΔBAK và ΔBDK có
BA=BD
\(\widehat{ABK}=\widehat{DBK}\)
BK chung
Do đó: ΔBAK=ΔBDK
=>\(\widehat{BAK}=\widehat{BDK}\)
=>\(\widehat{BDK}=90^0\)
=>KD\(\perp\)BC
=>KD//AH
d: Xét ΔBKD có EH//KD
nên \(\dfrac{EH}{KD}=\dfrac{BH}{BD}\)
=>\(\dfrac{EH}{KD}=\dfrac{BH}{BA}\)
Xét ΔBHA vuông tại H và ΔBAC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔBHA~ΔBAC
=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\)
=>\(\dfrac{EH}{KD}=\dfrac{BA}{BC}\)
=>\(\dfrac{EH}{BA}=\dfrac{KD}{BC}\)
a: Xét ΔAIB vuông tại I và ΔAEC vuông tại E có
\(\widehat{IAB}\) chung
Do đó: ΔAIB~ΔAEC
=>\(\dfrac{AI}{AE}=\dfrac{AB}{AC}\)
=>\(AI\cdot AC=AB\cdot AE\)
b: Xét ΔCBI vuông tại I và ΔACF vuông tại F có
\(\widehat{BCI}=\widehat{CAF}\)(BC//AF)
Do đó; ΔCBI~ΔACF
=>\(\dfrac{CI}{AF}=\dfrac{CB}{AC}\)
=>\(CB\cdot AF=CI\cdot AC\)
\(AB\cdot AE+CB\cdot AF\)
\(=AI\cdot AC+CI\cdot AC\)
\(=AC\left(AI+CI\right)=AC^2\)
c: Xét tứ giác AECF có \(\widehat{AEC}+\widehat{AFC}=90^0+90^0=180^0\)
nên AECF là tứ giác nội tiếp
=>\(\widehat{FAC}=\widehat{FEC}\)
mà \(\widehat{FAC}=\widehat{BCA}\)(AD//BC)
nên \(\widehat{CEF}=\widehat{BCA}\)