Tính 210-29-28-...-2-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) a ³ (b - c) + b ³ (c - a)+ c ³ (a - b)
=a3(b-c)-b3[(b-c)+(a-b)]+c3(a-b)
=a3(b-c)-b3(b-c)-b3(a-b)+c3(a-b)
=(b-c)(a-b)(a2+ab+b2)-(b-c)(a-b)(b2+bc+c2)
=(b-c)(a-b)(a2+2b2+c2+ab+bc)
\(a,x^2-25-x-5=0\)
\(x^2-x-30=0\)
\(x^2+5x-6x-30=0\)
\(x\cdot\left(x+5\right)-6\cdot\left(x+5\right)=0\)
\(\left(x+5\right)\cdot\left(x-6\right)=0\)
\(\orbr{\begin{cases}x+5=0\\x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x=6\end{cases}}}\)
b) \(\left(10x+9\right)x-\left(5x-1\right)\left(2x+3\right)=8\)
\(\Leftrightarrow\left(10x^2+9x\right)-\left(10x^2+13x-3\right)=8\)
\(\Leftrightarrow-4x+3=8\)
\(\Leftrightarrow-4x=5\Leftrightarrow x=\frac{-5}{4}\)
Ta có: \(P=-x^2+2x+5\)
\(=-x^2+2x-1+6\)
\(=-\left(x-1\right)^2-6\)
Vì \(-\left(x-1\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x-1\right)^2-6\le0-6;\forall x\)
Hay\(P\le-6;\forall x\)
Dấu "="xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Vậy MAX P=-6 khi x=1
\(x^2-x+27=0\)
Ta có: \(\Delta=1-4.27=-107< 0\)
Vậy pt vô nghiệm
ta có:
a) (x2 - 3x + xy - 3y) : (x + y)
= [x(x - 3) + y(x - 3)] : (x + y)
= (x + y)(x - 3) : (x + y)
= x - 3
b) (x2 - y2 + 6x + 9) : (x + y + 3)
= [(x2 + 6x + 9) - y2] : (x + y + 3)
= [(x + 3)2 - y2] : (x + y + 3)
= (x + y + 3)(x - y + 3) : (x + y + 3)
= x - y + 3
Cậu đặt phép chia, nó sẽ ra :
2x3 -x2 -x +1 = (x-2)(2x2 + 3x + 5) dư 11
=> 2x3 -x2 -x +1 \(⋮\)x-2 \(\Leftrightarrow\)x-2=11
\(\Leftrightarrow\)x=13