(Nghi binh 25/09)
Cho \(\hept{\begin{cases}a,b,c>0\\a+b+c=3\end{cases}}\)
Đặt: \(S_1=\frac{1}{a^2+b^2+c}+\frac{1}{b^2+c^2+a}+\frac{1}{c^2+a^2+b}\)
và: \(S_2=\frac{1}{a^2+b+c}+\frac{1}{b^2+c+a}+\frac{1}{c^2+a+b}\)
Chứng minh rằng: GTLN \(S_1\)= GTLN \(S_2\)
Ta có \(\hept{\begin{cases}a+b+c=3\\a,b,c>0\end{cases}\Rightarrow\hept{\begin{cases}a+b+c=3\\a,b,c\ge1\end{cases}}}\)
Vì \(a,b,c\ge1\)
\(\Rightarrow a+b+c\le a^2+b^2+c\)
\(\Rightarrow\frac{1}{a+b+c}\ge\frac{1}{a^2+b^2+c}\left(1\right)\)
Tương tự
\(\frac{1}{a+b+c}\ge\frac{1}{b^2+c^2+a}\left(2\right)\)
\(\frac{1}{a+b+c}\ge\frac{1}{c^2+b^2+a}\left(3\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow\frac{3}{a+b+c}\ge\frac{1}{a^2+b^2+c}+\frac{1}{b^2+c^2+a}+\frac{1}{c^2+a^2+b}\)
\(\Rightarrow\frac{3}{3}\ge\frac{1}{a^2+b^2+c}+\frac{1}{b^2+c^2+a}+\frac{1}{c^2+a^2+b}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=1\end{cases}}\)
Vậy Max S1 = 3/3 = 1 \(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=1\end{cases}}\) (4)
Vì \(a,b,c\ge1\)
\(\Rightarrow a+b+c\le a^2+b+c\)
\(\Rightarrow\frac{1}{a+b+c}\ge\frac{1}{a^2+b+c}\left(5\right)\)
Tương tự
\(\frac{1}{a+b+c}\ge\frac{1}{b^2+c+a}\left(6\right)\)
\(\frac{1}{a+b+c}\ge\frac{1}{c^2+b+a}\left(7\right)\)
Từ \(\left(5\right);\left(6\right);\left(7\right)\Rightarrow\frac{3}{a+b+c}\ge\frac{1}{a^2+b+c}+\frac{1}{b^2+c+a}+\frac{1}{c^2+a+b}\)
\(\frac{3}{3}\ge\frac{1}{a^2+b+c}+\frac{1}{b^2+c+a}+\frac{1}{c^2+a+b}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=1\end{cases}}\)
Vậy Max S2 = 3/3 = 1 \(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=1\end{cases}}\) (8)
Từ (4); (8) => GTLN S1 = GTLN S2 (đpcm)