K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2020

Làm

a) Xét hai tam giác vuông ABM và tam giác vuông KBM có :

BM là cạnh chung

góc ABM = góc KBM ( gt )

Do đó : Tam giác ABM = tam giác KBM ( cạnh huyền - góc nhọn )

=> BA = BK nên B thuộc đường trung trực của AK

MA = MK nên K thuộc đường trung trực của AK 

Vậy BM là đường trung trực của AK

b)  Xét hai tam giác vuông AMN và tam giác KMC có :

góc AMN = góc KMC ( đối đỉnh )

MA = MK ( theo câu a )

Do đó : tam giác AMN = KMC ( cạnh góc vuông - góc nhọn ) 

Vậy MC = MN 

c) Phần c không dõ đề bài nên mk k giải đc câu c nếu muốn giải câu c thì cậu gửi đề bài cho mk mk giải cho

d) Ta có : AB + AN = BN 

BK + KC = BC 

Mà BA = BK ( theo câu a )

AN = KC ( Theo câu b )

=> BN = BC ( *)

Xét  tam giác NBM và tam giác CBM có : 

BM là cạnh chung

BN = BC ( theo *)

góc NBM = góc CBM ( gt )

Do đó : tam giác NBM = tam giác CBM ( c.g.c )

=> góc BMN = góc BMC 

mà góc BMN + góc BMC = 180°

=>  góc BMN = góc BMC = 180° : 2

=> góc BMN = góc BMC = 90°

Vậy BM vuông hóc với NC 

HỌC TỐT

24 tháng 6 2020

Hình bn tự vẽ nhé

a. Xét hai tam giác vuông ABM và tam giác vuông KBM có;

               góc BAM = góc BKM =  90độ

                cạnh BM chung

                góc ABM = góc KBM [ vì BM là tia pg góc B ]

Do đó ; tam giác ABM = tam giác KBM [ cạnh huyền - góc nhọn ]

\(\Rightarrow\)AB = KB nên B \(\in\)đường trung trực của AK 

và MA = MK nên M \(\in\)đường trung trực của AK 

\(\Rightarrow\)BM là đường trung trực của AK

b.Xét hai tam giác vuông AMN và tam giác vuông KMC có ;

              góc MAN = góc MKC = 90độ

              AM = KM [ theo câu a ]

              góc AMN = góc KMC [ đối đinh ]

Do đó ; tam giác AMN = tam giác KMC [ cạnh góc vuông - góc nhọn ]

\(\Rightarrow\)MN = MC [ cạnh tương ứng ]

c.Theo câu a ; tam giác ABM = tam giác KBM 

\(\Rightarrow\)AM = KM  [ cạnh tương ứng ]     [ 1 ]

Xét tam giác KMC vuông tại K nên ;

MK bé hơn MC                                    [ 2 ]

Từ [ 1 ] và [ 2  ] suy ra ; 

AM bé hơn MC 

d. Theo câu b ; tam giác AMN = tam giác KMC 

\(\Rightarrow\)AN = KC [ cạnh tương ứng ]

mà BA = BK [ vì tam giác ABM = tam giác KBM theo câu a ]

\(\Leftrightarrow\)AN + BA = KC + BK 

\(\Rightarrow\)      BN     =      BC nên B thuộc đường trung trực của CN 

mà MN = MC nên M thuộc đường trung trực của CN 

Vậy BM thuộc đường trung trực của CN 

\(\Rightarrow\)BM vuông góc với CN

Theo mk nghĩ thì câu c . So sánh AM với MC 

                                     d. BM vuông góc với CN 

HỌC TỐT

Nhớ kb với mk nha

24 tháng 6 2020

ta có N(x)=2x2-2+k2+kx

=> 2.(-1)2-2+k2+k.(-1)=0

=.>k=1

chúc bạn thi tốt nha !!!

24 tháng 6 2020

Thay \(x=-1\) vào đa thức \(N\left(x\right)=2x^2-2+k^2+kx\) ta được :

\(2\left(-1\right)^2-2+k^2+k\left(-1\right)=0\)

\(\Rightarrow k^2+k\left(-1\right)=0\)

\(\Rightarrow k.\left[k+\left(-1\right)\right]=0\)

\(\Rightarrow k+\left(-1\right)=0\)

\(\Rightarrow k=1\) 

Vậy khi \(k=1\) thì đa thức \(N\left(x\right)\) có nghiệm là \(x=-1\)

24 tháng 6 2020

Ta có :

\(x=2005\Rightarrow x+1=2006\)

Thay \(2006=x+1\) vào biểu thức trên ta được : 

\(x^{2005}-\left(x+1\right)x^{2004}+\left(x+1\right)x^{2003}-\left(x+1\right)x^{2002}+...-\left(x+1\right)x^2+\left(x+1\right)x-1\)

\(=x^{2005}-x^{2005}+x^{2004}-x^{2004}+x^{2003}-...-x^3+x^2-x^2+x-1\)

\(=x-1\) mà \(x=2005\)

\(\Rightarrow x^{2005}-2006.x^{2004}+2006.x^{2003}-2006.x^{2002}+...-2006.x^2+2006x-1=2005-1=2004\)

24 tháng 6 2020

Vì x, y, z, t thuộc N* nên :

\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x}{x+y}\left(1\right)\)

\(\frac{y}{x+y+z+t}< \frac{y}{z+y+t}< \frac{y}{x+y}\left(2\right)\)

\(\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z}{z+t}\left(3\right)\)

\(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t}{x+y}\left(4\right)\)

Từ (1) (2) (3) và (4)

\(\Rightarrow\frac{x+y+z+t}{x+y+z+t}< M< \frac{x+y}{x+y}+\frac{z+t}{z+t}\)

\(\Rightarrow1< M< 2\)

\(\Rightarrow M\) không phải là số tự nhiên

24 tháng 6 2020

Cái chỗ (4) là \(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t}{z+t}\)nha mình nhầm

24 tháng 6 2020

\(\frac{6}{5}+\left|\frac{1}{2}-1\right|\)

\(=\frac{6}{5}+\left|-\frac{1}{2}\right|\)

\(=\frac{6}{5}+\frac{1}{2}\)

\(=\frac{17}{10}\)

24 tháng 6 2020

\(=\frac{5}{6}+\left|-\frac{1}{2}\right|\)

\(=\frac{5}{6}+\frac{1}{2}\)

\(=\frac{5}{6}+\frac{3}{6}\)

\(=\frac{4}{3}\)

25 tháng 6 2020

a) IB là đường trung trực của HD nên ID = IH => \(\Delta IDH\) cân tại I.IB là đường cao,phân giác,trung tuyến,trung trực

b) Xét \(\Delta HIK\) , IB là đường phân giác của góc ngoài tại I ,tương tự KC là đường phân giác của góc ngoài tại K,chúng cắt nhau ở A nên HA là tia phân giác của góc IHK

A A A B B B C C C H H H I I I K K K E E E D D D

P/S : Máy hơi bị lag mạnh nên thông cảm

24 tháng 6 2020

Làm

a) M = (-2/3 . x2. y ).( 3/4 . x . y)

    M = (-2/3 . 3/4 ) . ( x. x ) . ( y . y)

    M = -1/2xy

b) Hệ số : -1/2 

  Biến số : xy

Bậc của đơn thức sau khi rút gọn : 3 + 4 = 7

HỌC TỐT

a, \(M=\left(-\frac{2}{3}x^2y\right)\left(\frac{3}{4}xy^3\right)\)

\(=-\frac{1}{2}x^3y^4\)

b, Hệ số : -1/2

Phần biến : x^3y^4 

Bậc : 7 

24 tháng 6 2020

Ta có: \(N=\frac{x+2}{x-1}=\frac{x-1+3}{x-1}=1+\frac{3}{x-1}\)

Để M,N đồng thời có giá trị nguyên thì \(2⋮\left(x+3\right)\)và \(3⋮\left(x-1\right)\)

hay \(x+3\inƯ\left(2\right)\)và \(x-1\inƯ\left(3\right)\)

Ta có bảng:

x+31-12-2
x-2-4-1-5
x-11-13-3
x204

-2

Vay \(x\in\left\{-5;-4;-2;-1;0;2;4\right\}\)

24 tháng 6 2020

Ta có : 

\(\left(a-b\right)^2< 2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2-2ab+b^2< 2a^2+2b^2\)

\(\Leftrightarrow a^2-2a^2-2ab+b^2-2b^2< 0\)

\(\Leftrightarrow-a^2-2ab-b^2< 0\)

\(\Leftrightarrow-\left(a^2+2ab+b^2\right)< 0\)

\(\Leftrightarrow-\left(a+b\right)^2.\left(-1\right)>0.\left(-1\right)\)

\(\Leftrightarrow\left(a+b\right)^2>0\forall a;b\)( luôn đúng )

Vậy \(\left(a-b\right)^2< 2\left(a^2+b^2\right)\)( đpcm )

24 tháng 6 2020

_Linh : Chả hiểu đoạn cuối bạn làm như thế nào nữa, ai lại đi nhân một số với 0 :))

\(\left(a-b\right)^2< 2\left(a^2+b^2\right)\Leftrightarrow a^2+b^2+2ab>0\Leftrightarrow\left(a+b\right)^2>0\)

Chắc là phải dấu \(\ge\) bạn nhé !