Tìm giá trị của m để hàm số:\(y=\left(|m-2|-4\right)x^2\)
a,Đồng biến trong khoảng \(\left(0;+\infty\right)\)
b,Nghịch biến trong khoảng \(\left(0;+\infty\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+\left(m-3\right)x=0\)
\(\Leftrightarrow x\left[2x+\left(m-3\right)\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3-m}{2}\end{cases}}\)
Phương trình có nghiệm nguyên dương bé hơn 3 khi \(\frac{3-m}{2}=t\) với t = 1 , 2
\(t=1\Leftrightarrow m=1\)
\(t=2\Leftrightarrow m=-1\)
Vậy phương trình có nghiệm x = 1 <=> m = 1 ; x = 2 <=> m = -1
\(x^4-4x^3-x^3+4x^2+4x^2-4x-x+1=0\)0
\(x^3\left(x-4\right)-x^2\left(x-4\right)+4x\left(x-1\right)-\left(x-1\right)\)=0
\(\left(x^3-x^2\right)\cdot\left(x-4\right)+\left(4x-1\right)\cdot\left(x-1\right)=0\)
\(x^2\left(x-1\right)\cdot\left(x-4\right)+\left(4x-1\right)\cdot\left(x-1\right)=0\)
\(\left(x-1\right)\cdot\left(x^3-4x^2+4x-1\right)=0\)
\(x=1\)
Phương trình đã cho có dạng:
\(ax^4+bx^3+cx^2+a=0\left(a\ne0\right)\)
Đặt \(x+\frac{1}{x}=y\) ta đưa phương trình về dạng:\(y^2-5y+6=0\)
Giải phương trình bậc hai theo y ta có:\(y_1=2;y_2=3\)
Do đó:
\(x+\frac{1}{x}=2\Rightarrow x^2-2x+1=0\Rightarrow x_o=1\)
\(x+\frac{1}{x}=3\Rightarrow x^2-3x+1=0\Rightarrow x_1=\frac{3-\sqrt{5}}{2};x_2=\frac{3+\sqrt{5}}{2}\)
Vậy phương trình đã cho có ba nghiệm là:
\(x_o=1;x_1=\frac{3-\sqrt{5}}{2};x_2=\frac{3+\sqrt{5}}{2}\)(xo là nghiệm kép).
y = ax + b (d)
Vì đường thẳng (d) đi qua A(2;2) => x = 2 ; y = 2
Thay x = 2 ; y = 2 vào đường thẳng (d) ta được:
\(2=2a+b\)
\(\Rightarrow b=2-2a\)(1)
Vì đường thẳng (d) đi qua B(1;3) => x = 1 ; y = 3
Thay x = 1 ; y = 3 vào đường thẳng (d) ta được:
\(3=a+b\)
\(\Rightarrow a+b=3\)(2)
Thế (1) vào (2) ta được:
\(a+2-2a=3\)
\(\Rightarrow a=-1\)
Thay a = -1 vào (2) ta được: \(a+b=3\Rightarrow-1+b=3\Rightarrow b=4\)
=>Phương trình đường thẳng (d) có dạng y = -x + 4
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Tìm giá trị nguyên nhỏ nhất của biểu thức P=\(\frac{^{x^4+y^4}}{15}\) với x,y là các số nguyên dương
Vì \(x^4\ge0\forall x;y^4\ge0\forall y\)
\(\Rightarrow P\ge0\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x^4+y^4=0\)
\(\Leftrightarrow\hept{\begin{cases}x^4=0\\y^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}\Leftrightarrow}x=y=0}\)
Vậy \(P_{min}=0\Leftrightarrow x=y=0\)
Gọi \(T=...\)
\(T+3=\frac{\sqrt{x}}{\sqrt{y}+\sqrt{z}}+1+\frac{\sqrt{y}}{\sqrt{z}+\sqrt{x}}+1+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}}+1\)
\(T+3=\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\left(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{z}+\sqrt{x}}\right)\)
\(\ge\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right).\frac{\left(1+1+1\right)^2}{2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}=\frac{9}{2}\)\(\Rightarrow\)\(T\ge\frac{9}{2}-3=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)
...
Đặt \(\hept{\begin{cases}\sqrt{x}=a\\\sqrt{y}=b\\\sqrt{z}=c\end{cases}\left(a,b,c>0\right)}\)
Đặt \(P=\frac{\sqrt{x}}{\sqrt{y}+\sqrt{z}}+\frac{\sqrt{y}}{\sqrt{z}+\sqrt{x}}+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}}\)
\(\Rightarrow P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(\Rightarrow P+3=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\)
\(P+3=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\)
\(P+3=\frac{a}{b+c}+\frac{b+c}{b+c}+\frac{b}{c+a}+\frac{c+a}{c+a}+\frac{c}{a+b}+\frac{a+b}{a+b}\)
\(2\left(P+3\right)=2.\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
\(2\left(P+3\right)=\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
Áp dụng BĐT AM-GM ta có:
\(2\left(P+3\right)\ge3.\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.3.\sqrt[3]{\frac{1}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}}=9.\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.\frac{1}{\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=9\)
\(\left(\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ne0\right)\)
\(\Leftrightarrow P+3\ge4,5\)
\(\Leftrightarrow P\ge1,5\)
\(P=1,5\Leftrightarrow a=b=c\Leftrightarrow\sqrt{x}=\sqrt{y}=\sqrt{z}\Leftrightarrow x=y=z\)
Vậy \(P_{min}=1,5\Leftrightarrow x=y=z\)
A B C H E F I 1
Vì BE , BH là các tiếp tuyến của (O)
=> AB là phân giác ^EAH
=> \(\widehat{BAH}=\frac{\widehat{EAH}}{2}\)
Tương tự \(\widehat{CAH}=\frac{\widehat{HÀF}}{2}\)
\(\Rightarrow\widehat{BAH}+\widehat{CAH}=\frac{\widehat{EAH}+\widehat{HAF}}{2}\)
\(\Rightarrow\frac{\widehat{EAH}+\widehat{HÀF}}{2}=90^o\)
\(\Rightarrow\widehat{EAH}+\widehat{HAF}=180^o\)
=> E , A , F thẳng hàng
=> EF là đường kính (A)
=> A là trung điểm EF
VÌ BE , CF là 2 tiếp tuyến của (A)
=> \(BE\perp EF\)và \(CF\perp EF\)
\(\Rightarrow BE\)// \(CF\)
=> BEFC là hình thang đáy BE , CF
Xét hình thang BEFC có A là trung điểm EF
I là trung điểm BC
=> AI là đường trung bình hình thang BEFC
=> AI // EF
Mà \(EF\perp FC\)(tiếp tuyến)
=> \(AI\perp AF\)
=> \(\Delta AIF\)vuông tại A
=> \(sinF_1=\frac{AI}{IF}\)
Giờ cần tính AI và IF nữa là xong !
Áp dụng định lí Py-ta-go vào \(\Delta\)ABC vuông tại A
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow3^2+6^2=BC^2\)
\(\Leftrightarrow BC^2=45\)
\(\Leftrightarrow BC=3\sqrt{5}\)(Do BC > 0)
Vì \(\Delta\)ABC vuông tại A có AI là đường trung tuyến
=> \(AI=\frac{BC}{2}=\frac{3\sqrt{5}}{2}\)
Áp dụng hệ thức lượng vào \(\Delta\)ABC vuông tại A đường cao AH
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
\(=\frac{1}{3^2}+\frac{1}{6^2}\)
\(=\frac{5}{36}\)
\(\Rightarrow AH^2=\frac{36}{5}\)
\(\Rightarrow AF^2=\frac{36}{5}\)(Do AH = À vì cùng là bán kính (A) )
Áp dụng định lí Py-ta-go vào tam giác AIF vuông tại A
\(AI^2+AF^2=IF^2\)
\(\Rightarrow\left(\frac{3\sqrt{5}}{2}\right)^2+\frac{36}{5}=IF^2\)
\(\Rightarrow IF^2=\frac{369}{20}\)
\(\Rightarrow IF=\sqrt{\frac{369}{20}}=\frac{3\sqrt{205}}{10}\)
Khi đó \(sinF_1=\frac{AI}{IF}=\frac{3\sqrt{5}}{2}:\frac{3\sqrt{205}}{10}=\frac{5}{\sqrt{41}}\)
Vậy \(sinF_1=\frac{5}{\sqrt{41}}\)
Hàm số \(y=\left(|m-2|-4\right)x^2\) có dạng: \(y=ax^2\)
với \(a=|m-2|-4\)
\(a=|m-2|-4>0\Leftrightarrow|m-2|>4\)
\(\Rightarrow m>6\)hoặc \(m< -2\)
b,Hàm số \(y=\left(|m-2|-4\right)x^2\) nghịch biến trong khoảng \(\left(0;+\infty\right)\Leftrightarrow|m-2|-4< 0\)
\(|m-2|-4< 0\Leftrightarrow|m-2|< 4\)
\(\Rightarrow-2< m< 6\)