K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2020

k mk nha

15 tháng 3 2020

a) Với a=4 thì phương trình bằng \(\frac{x+4}{x+2}+\frac{x-2}{x-4}\)= 2  với đkxđ: \(x\ne2,4\)

Giải phương trình: \(\frac{x+4}{x+2}+\frac{x-2}{x-4}\)= 2 => \(1+\frac{2}{x+2}+1+\frac{2}{x-4}=2\)

=> \(\frac{2}{x+2}+\frac{2}{x-4}=0\Rightarrow\frac{1}{x+2}+\frac{1}{x-4}=0\)

=> \(\frac{\left(x-4\right)+\left(x+2\right)}{\left(x+2\right)\cdot\left(x-4\right)}=0\)=> 2x-2=0 => x=1 (thỏa mãn đkxđ)

Vậy x=1

b) Với x=-1 => \(\frac{a-1}{1}+\frac{-3}{-1-a}=2\)(đkxđ: a không bằng -1)

=> \(\left(a-1\right)+\frac{3}{a+1}=2\)

=> \(\frac{a^2-1+3}{a+1}=2\)=> \(a^2+2=2\left(a+1\right)\Rightarrow a^2-2a=0\)

=> \(a\left(a-2\right)=0\)=> a = (0; 2) (thỏa mãn đkxđ)

Vậy để phương trình có nghiệm x=-1 thì a={0; 2}

15 tháng 3 2020

Ta có: \(VT-VP=\frac{\Sigma\left(a+b-c\right)^2\left(a-b\right)^2}{2\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}\ge0\)

Đẹp quá:3

14 tháng 3 2020

Trả lời :

  \(5^6-64+1000000\)

\(=15625-64+1000000\)

\(=15561+1000000\)

\(=1015561\)

          - Study well -

14 tháng 3 2020

56-64+1000000

=15625-64+1000000

=15561+1000000

=1015561.

#Học tốt.

14 tháng 3 2020

A B C I N D M

a, xét tứ giác AMIN có : ^INA = ^NAM = ^AMI = 90

=> AMIN là hình chữ nhật

=> MN = AI (tc)

b, xét tứ giác CDAI có : N là trung điểm của AC (Gt)

N là trung điểm của DI do D đối xứng với I qua N (Gt)

=> CDAI là hình bình hành (dh)

AI là trung tuyến của tam giác vuông ABC (gt) => AI = BC/2 (tc)

I là trung điểm của BC (Gt) => CI = BC/2 (tc)

=> CDAI là hình thoi (dh)

c, CDAI là hình thoi (Câu b) 

để CDAI là hình thoi

<=> ^CIA = 90 mà AI là trung tuyến của tam giác ABC (gt)

<=> tam giác ABC cân tại A

14 tháng 3 2020

Đặt \(t=x^2+3x+2\), ta được :

     \(t\left(t+1\right)-2=0\)

\(\Leftrightarrow t^2+t-2=0\)

\(\Leftrightarrow t^2+2t-t-2=0\)

\(\Leftrightarrow t\left(t+2\right)-\left(t+2\right)=0\)

\(\Leftrightarrow\left(t-1\right)\left(t+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-1=0\\t+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+3x+1=0\\x^2+3x+4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{3}{2}\right)^2-\frac{5}{4}=0\left(tm\right)\\\left(x+\frac{3}{2}\right)^2+\frac{7}{4}=0\left(ktm\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{2}=\frac{\sqrt{5}}{2}\\x+\frac{3}{2}=-\frac{\sqrt{5}}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}-3}{2}\\x=-\frac{\sqrt{5}+3}{2}\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{\sqrt{5}-3}{2};-\frac{\sqrt{5}+3}{2}\right\}\)

14 tháng 3 2020

W.L.O.G:  \(a\ge b\ge c\Rightarrow2\ge a\ge\frac{a+b+c}{3}=1\Rightarrow\left(a-2\right)\left(a-1\right)\le0\)

\(\therefore a^2+b^2+c^2\le a^2+\left(b+c\right)^2=2\left(a-1\right)\left(a-2\right)+5\le5\)

Equality holds when \(\left(a;b;c\right)=\left(2;1;0\right)\) and ..

17 tháng 3 2020

Ta có: a2 + b2 > 2ab, b2 + c2 > 2bc, c2 + a2 > 2ca

=> 2(a2 + b2 + c2) >= 2(ab + bc + ca)

=>3(a2 + b2 + c2) >= (a + b + c)2

=> a2 + b2 + c2 >= \(\frac{\text{(a + b + c)}^2}{3}\)

=> a2 + b2 + c2 >= 3

Dâu = xảy ra khi: a = b = c = 1