Cho a, b, c là các số ≠ 0
a+b+c=1 ; a2+b2+c2=1 và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
Tính xy +yz + zx
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(...=20x^3-10x^2+5x-20x^3+10x^2+4x\)
\(=9x=9.\left(-15\right)=-135\left(x=-15\right)\)
a, A = 1002 - 992 + 982 - 972 +...+ 22 - 12
A = (1002 - 992) + (982 - 972) +...+ (22 - 1)2
A = (100 - 99)(100+99) + (98-97)(98+97)+..+(2-1)(2+1)
A = 1.199 + 1.195 + 1.191 +...+1.3
A = 3 + ...+191+ 195 + 199
Dãy số trên là dãy số cách đều với khoảng cách là: 199 -195=4
Dãy số trên có số hạng là: (199 - 3): 4 + 1 = 50 (số )
A = (199 +3) \(\times\) 50 : 2 = 5050
Gọi K là giao của AI với MN
Áp dụng talet trong tam giác
\(\dfrac{MK}{BI}=\dfrac{NK}{CI}\Rightarrow\dfrac{MK}{NK}=\dfrac{BI}{CI}=1\)
=> MK = NK
b) \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x-3\right)\left(x+3\right)=8\)
\(\Rightarrow x^3-1-x\left(x^2-9\right)=8\)
\(\Rightarrow x^3-1-x^3+9x=8\)
\(\Rightarrow9x=9\Rightarrow x=1\)
c) \(\left(x^2+2\right)\left(x-4\right)-\left(x+2\right)\left(x^2+4x+4\right)=-16\)
\(\Rightarrow x^3-4x^2+2x-8-\left(x+2\right)\left(x+2\right)^2=-16\)
\(\Rightarrow x^3-4x^2+2x-8-\left(x+2\right)^3=-16\)
\(\Rightarrow x^3-4x^2+2x-8-\left(x^3+6x^2+12x+8\right)=-16\)
\(\Rightarrow x^3-4x^2+2x-8-x^3-6x^2-12x-8=-16\)
\(\Rightarrow-10x^2-10x-16=-16\)
\(\Rightarrow10x^2+10x=0\)
\(\Rightarrow10x\left(x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Trên cạnh AD lấy điểm E sao cho AE=AB .
Xét ΔABCΔ���và ΔAECΔ���có :
AB=AE��=��(GT)
ˆA1=ˆA2�^1=�^2(vì AC là tia phân giác góc BAD )
AC:��:Cạnh chung
Do đó : tam giác ABC = tam giác AEC (c-g-c)
⇒BC=CE⇒��=��( cặp cạnh tương ứng ) (1)
ˆB1=ˆE1�^1=�^1( cặp góc tương ứng )
Vì tứ giác ABCD có :
ˆA+ˆB+ˆC+ˆC=360o�^+�^+�^+�^=360�( tính chất tứ giác lồi )
Mà ˆA+ˆC=180o�^+�^=180�( GT)
⇒ˆB+ˆD=180o⇒�^+�^=180�
Mà ˆB1=ˆE1�^1=�^1
ˆE2+ˆE1=180o�^2+�^1=180�
⇒ˆE2=ˆD⇒�^2=�^
⇒ΔCDE⇒Δ���cân tại C .
⇒DC=CE⇒��=��(2)
Từ (1) và (2)
\hept{BC=CEDC=CE\hept{��=����=��
⇒DC=BC(dpcm)
\(...\Rightarrow x^3-9x^2+27x-27-\left(x^3-27\right)+9\left(x^2+2x+1\right)=15\)
\(\Rightarrow x^3-9x^2+27x-27-x^3+27+9x^2+18x+9=15\)
\(\Rightarrow45x+9=15\Rightarrow45x=6\Rightarrow x=\dfrac{6}{45}=\dfrac{2}{15}\)
Ta có
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\) (1)
Ta có
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=x+y+z\)
\(\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\) (2)
Từ (1) và (2)
\(x^2+y^2+z^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(\Rightarrow xy+yz+zx=0\)