K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2020

so easy

\(2\sqrt{1-x}-\sqrt{x+1}+3\sqrt{1-x^2}=3-x\)

\(2\sqrt{1-x}-\sqrt{1+x}+2\sqrt{\left(1-x\right)\left(1+x\right)}+\sqrt{\left(1-x\right)\left(1+x\right)}=3-x\)

\(2\sqrt{1-x}\left(1-\sqrt{1+x}\right)-\sqrt{1+x}\left(1-\sqrt{1-x}\right)=3-x\)

1 tháng 1 2020

Gọi H1, H2, H3 lần lượt là trực tâm ΔABC1, ΔBCA1, ΔCAB1

Ta có : \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC_1}=\overrightarrow{OH}_1\left(1\right)\)

\(\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OA}_1=\overrightarrow{OH}_2\left(2\right)\)

\(\overrightarrow{OC}+\overrightarrow{OA}+\overrightarrow{OB}_1=\overrightarrow{OH}_3\left(3\right)\)

Trừ theo vế (1) , (2) ta có :

\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC'}+\overrightarrow{BO}+\overrightarrow{CO}+\overrightarrow{A_1O}=\overrightarrow{OH_1}+\overrightarrow{H_2O}\)

\(\Leftrightarrow\overrightarrow{A_1A}+\overrightarrow{CC_1}=\overrightarrow{H_2H_1}\)

TƯƠNG TỰ TRỪ THEO VẾ (2) , (3) ta được :

\(\overrightarrow{B_1B}+\overrightarrow{A_1A}=\overrightarrow{H_3H_2}\)

Lại có: AA1//BB1//CC1 (gt)

\(\Rightarrow\)vt AA1, vtA1A, vt B1B, CC1 cùng phương

\(\RightarrowĐPCM\)

31 tháng 12 2019

WTF TÍNH GÌ VẬY CẬU

31 tháng 12 2019

cậu tính được hok nè