giup em bai 5 va 6 voi a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a + a + a + 1/2 × 2/5 + a + 8/10 + a = 136
5 × a + 1/5 + 4/5 = 136
5 × a + 1 = 136
5 × a = 136 - 1
5 × a = 135
a = 135 : 5
a = 27
Thứ sáu tuần trước là ngày:
24 - 7 = 17
Đáp số ngày 17
\(a-\dfrac{18}{a+1}=-4\) (ĐK: \(a>0,a\ne-1\))
\(\Rightarrow\dfrac{a\left(a+1\right)}{a+1}-\dfrac{18}{a+1}=-4\)
\(\Rightarrow\dfrac{a\left(a+1\right)-18}{a+1}=-4\)
\(\Rightarrow\dfrac{a^2+a-18}{a+1}=-4\)
\(\Rightarrow a^2+a-18=-4\left(a+1\right)\)
\(\Rightarrow a^2+a-18=-4a-4\)
\(\Rightarrow a^2+a+4a-18+4=0\)
\(\Rightarrow a^2+5a-14=0\)
\(\Rightarrow a^2+5a+\dfrac{25}{4}-\dfrac{81}{4}=0\)
\(\Rightarrow\left[a^2+2\cdot\dfrac{5}{2}\cdot a+\left(\dfrac{5}{2}\right)^2\right]-\dfrac{81}{4}=0\)
\(\Rightarrow\left(a+\dfrac{5}{2}\right)^2=\dfrac{81}{4}\)
\(\Rightarrow\left(a+\dfrac{5}{2}\right)^2=\left(\dfrac{9}{2}\right)^2\)
TH1: \(a+\dfrac{5}{2}=\dfrac{9}{2}\)
\(\Rightarrow a=\dfrac{9}{2}-\dfrac{5}{2}\)
\(\Rightarrow a=2\left(tm\right)\)
TH2: \(a+\dfrac{5}{2}=-\dfrac{9}{2}\)
\(\Rightarrow a=-\dfrac{9}{2}-\dfrac{5}{2}\)
\(\Rightarrow a=-7\left(ktm\right)\)
Vậy số thực dương a thỏa mãn là a = 2
đổi 0,75= 3/4
coi số bé là 3 phầnbằng nhau,số lớn là 4 phần bằng nhau như thế
giá trị 1 phần là
0,75:(4-3)=0,75
số bé là
0,75x3 = 2,25
số lớn là
0,75x4=3
đ/s:...............
0,75 = 3/4
Hiệu số phần bằng nhau:
4 - 3 = 1
Số bé là:
0,75 : 1 × 3 = 2,25
Số lớn là:
2,25 + 0,75 = 3
A = \(\dfrac{22-3x}{4-x}\)
A = \(\dfrac{3.\left(4-x\right)+10}{4-x}\)
A = 3 + \(\dfrac{10}{4-x}\)
A lớn nhất khi \(\dfrac{10}{4-x}\) lớn nhất. Vì 10 > 0; \(x\) \(\in\) Z nên \(\dfrac{10}{4-x}\) lớn nhất khi
4 - \(x\) = 1 ⇒ \(x\) = 4 - 1 ⇒ \(x\) = 3
Vậy Amin = 3 + \(\dfrac{10}{1}\) = 13 khi \(x\) =3
Kết luận giái trị lớn nhất của biểu thức là 13 xảy ra khi \(x\) = 3
a) 8,5 : 0,034= 250
b) 29,5 : 2,36= 12,5
c) 3,5 : 2,66=\(\dfrac{25}{19}\)
B = (\(x\) + 2).(\(x^2\) - \(x\) + 1)
B là số nguyên tố khi và chỉ khi:
\(\left\{{}\begin{matrix}x+2=1\\x^2-x+1\in P\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x^2-x+1=1\\x+2\in P\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+2=1\\x^2-x+1\in p\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=1-2\\x^2-x+1\in P\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=-1\\x^2-x+1\in P\end{matrix}\right.\)
Thay \(x\) = -1 vào \(x^2\) - \(x\) + 1 ta có: (-1)2 - (-1) + 1 = 3 (nhận) (1)
TH2: \(\left\{{}\begin{matrix}x^2-x+1=1\\x+2\in P\end{matrix}\right.\)
\(x^2\) - \(x\) + 1 = 1
\(x\).(\(x\) - 1) = 1 - 1
\(x\).(\(x\) - 1) = 0
\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Thay \(x\) = 0 vào \(x\) + 2 ta có: \(x+2\) = 0 + 2 = 2 (nhận) (2)
Thay \(x\) = 1 vào \(x\) + 2 ta có: 1 + 2 = 3 (nhận) (3)
Kết hợp (1); (2) và (3) ta có:
\(x\) \(\in\) {-1; 0; 1}
Bài 6:
a) n + 3 chia hết cho n - 1
⇒ n - 1 + 4 chia hết cho n - 1
⇒ 4 chia hết cho n - 1
⇒ n - 1 ∈ Ư(4) = {1; -1; 2; -2; 4; -4}
⇒ n ∈ {2; 0; 3; -1; 5; -3}
b) n - 3 chia hết cho n + 2
⇒ n + 2 - 5 chia hết cho n + 2
⇒ 5 chia hết cho n + 2
⇒ n + 2 ∈ Ư(5) = {1; -1; 2; -2}
⇒ n ∈ {-1; -3; 0; -4}
c) n - 5 chia hết cho n - 7
⇒ n - 7 + 2 chia hết cho n - 7
⇒ 2 chia hết cho n - 7
⇒ n - 7 ∈ Ư(2) = {1; -1; 2; -2}
⇒ n ∈ {8; 6; 9; 5}
d) n + 7 chia hết cho n - 4
⇒ n - 4 + 11 chia hết cho n - 4
⇒ 11 chia hết cho n - 4
⇒ n - 4 ∈ Ư(11) = {1; -1; 11; -11}
⇒ n ∈ {5; 3; 15; -7}
e) 3n - 1 chia hết cho n + 2
⇒ 3n + 6 - 7 chia hết cho n + 2
⇒ 3(n + 2) - 7 chia hết cho n + 2
⇒ 7 chia hết cho n + 2
⇒ n + 2 ∈ Ư(7) = {1; -1; 7; -7}
⇒ n ∈ {-1; -3; 5; -9}
f) 2n + 7 chia hết cho n - 1
⇒ 2n - 2 + 9 chia hết cho n - 1
⇒ 2(n - 1) + 9 chia hết cho n - 1
⇒ 9 chia hết cho n - 1
⇒ n - 1 ∈ Ư(9) = {1; -1; 3; -3; 9; -9}
⇒ n ∈ {2; 0; 4; -2; 10; -8}
Bài 5:
a, 3.55: (-5)4 + 5.(3\(x\) - 1) = 25
3.55 : 54 + 5.(3\(x\) - 1) = 25
3.5 + 5.(3\(x\) - 1) = 25
15 + 5.(3\(x\) - 1) = 25
5.(3\(x\) - 1) = 25 - 15
5.(3\(x\) -1) = 10
3\(x\) - 1 = 10 : 5
3\(x\) - 1 = 2
3\(x\) = 2 + 1
3\(x\) = 3
\(x\) = 3: 3
\(x\) = 1