Cho (O;R) và A nằm ngoài đường tròn và OA=2R. 1 cát tuyến d quay quanh A và cắt (O;R) tại E và F. Tiếp tuyến tại E và F cắt nhau tại K. Chứng minh rằng: K luôn thuộc 1 đường cố định.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức AM - GM, ta được: \(2xy-4=x+y\ge2\sqrt{xy}\)
Đặt \(\sqrt{xy}=t\)thì ta có: \(2t^2-2t-4\ge0\Leftrightarrow2\left(t-2\right)\left(t+1\right)\ge0\Rightarrow t\ge2\)
\(\Rightarrow xy\ge4\)
\(P=xy+\frac{1}{x^2}+\frac{1}{y^2}\ge xy+\frac{2}{xy}=\left(\frac{2}{xy}+\frac{xy}{8}\right)+\frac{7xy}{8}\ge2\sqrt{\frac{2}{xy}.\frac{xy}{8}}+\frac{7.4}{8}=\frac{9}{2}\)
Đẳng thức xảy ra khi x = y = 2
ĐKXĐ : \(x\ge5;x\le0\)
Nhận xét :
TH1 : Nếu \(x\ge5\Rightarrow x-2>x-3\Leftrightarrow\sqrt{x\left(x-2\right)}>\sqrt{x\left(x-3\right)}\Leftrightarrow VT>VP\)
TH2 : Nếu \(x< 0\Rightarrow5-x>3-x\Leftrightarrow\sqrt{-x\left(5-x\right)}>\sqrt{-x\left(3-x\right)}\Leftrightarrow VT>VP\)
Như vậy chỉ có 1 ngiệm là \(x=0\), thay lại vào pt thấy hợp lí.
Mình nghĩ vậy thôi chứ chắc là sai rồi vì trông làm củ chuối quá :'
Trên tia đối của tia AC lấy điểm D sao cho AD=AB
Tam giác ABD cân tại A
=> BAC=B2+D=2D
Lại có: BAC=2B1 => D=B1
\(\Delta CBA~\Delta CDB\left(g.g\right)\Rightarrow\frac{CB}{CD}=\frac{AC}{BC}\)hay \(\frac{CB}{36}=\frac{25}{BC}\)
Từ đó : \(BC^2=25.36\Rightarrow BC=5.6=30\left(cm\right)\)
Khi đó phương trình đã cho tương đương với: \(4\left(\sqrt{x+2}-2\right)+\left(\sqrt{22-3x}-4\right)=x^2-4\)
\(\Leftrightarrow\frac{4\left(x-2\right)}{\sqrt{x+2}-2}+\frac{3\left(2-x\right)}{\sqrt{22-3x}+4}=\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x+2-\frac{4}{\sqrt{x+2}-2}+\frac{3}{\sqrt{22-3x}+4}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x+2-\frac{4}{\sqrt{x+2}-2}+\frac{3}{\sqrt{22-3x}+4}=0\end{cases}\left(1\right)}\)
Xét hàm số f(x)=\(x+2-\frac{4}{\sqrt{x+2}-2}+\frac{3}{\sqrt{22-3x}+4}\left(-2\le x\le\frac{10}{3}\right)\)
Ta có \(f'\left(x\right)=1+\frac{2}{\sqrt{x+2}+\left(\sqrt{x+2}-2\right)}+\frac{9}{\sqrt{22-3x}\left(\sqrt{22-3x}+4\right)}>0\)với mọi \(x\in\left(-2;\frac{22}{3}\right)\)Do đó hàm f(x) đồng biến trên \(x\in\left[-2;\frac{22}{3}\right]\)
Mặt khác ta thấy f(-1)=0 nên x=-1 là nghiệm duy nhất của phương trình (1)
Vậy x=2;x=-1 là nghiệm của phương trình