Giải phương trình:
a) \(\frac{x^2+2x+7}{\left(x+1\right)^2+2}=x^2+2x+4\)
b) \(\frac{2x}{3x^2-x+2}-\frac{7x}{3x^2+5x+2}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2+xy+y^2}{x-y}=\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)^2}=\frac{x^3-y^3}{\left(x-y\right)^2}\)
\(\frac{x^2+xy+y^2}{x-y}\)
\(=\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)^2}\)
\(=\frac{x^3-y^3}{x^2-2xy+y^2}\)
Ta có:
\(\frac{2}{x^2+2x}+\frac{2}{x^2+6x+8}+\frac{2}{x^2+10x+24}+\frac{1}{x+6}\)
= \(\frac{2}{x\left(x+2\right)}+\frac{2}{x^2+4x+2x+8}+\frac{2}{x^2+4x+6x+24}+\frac{1}{x+6}\)
= \(\frac{2}{x\left(x+2\right)}+\frac{2}{x\left(x+4\right)+2\left(x+4\right)}+\frac{2}{x\left(x+4\right)+4\left(x+6\right)}+\frac{1}{x+6}\)
= \(\frac{2}{x\left(x+2\right)}+\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{2}{\left(x+4\right)\left(x+6\right)}+\frac{1}{x+6}\)
= \(\frac{1}{x}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+6}+\frac{1}{x+6}\)
= \(\frac{1}{x}\)
1)
Nếu x>1 thì x^2>1; y^2;z^2 cx lớn=1
=> x^2+y^2+z^2>1=> Loại
Nếu x<-1=> x^2>1; y^2;z^2 cx lớn=1
=> x^2+y^2+z^2>1=> Loại
CMTT vs y,z thì -1<=x,y,z<=1
TH1: -1<=x<0
=> x<x^2 do x âm và x^2 dương
CMTT => y<y^2; z<z^2
=> x+y+z<x^2+y^2+z^2
Mà x+y+z=1, x2+y2+z2=1=> x+y+z=x^2+y^2+z^2
=> LOẠI.
TH2: 0<=x,y,z<=1
=> x>=x^2; y>=y^2; z>=z^2
=> x+y+z>=x^2+y^2+z^2
Mà x+y+z=1, x2+y2+z2=1=> x+y+z=x^2+y^2+z^2
=> ''='' xảy ra <=> x=0 hoặc 1; y=0 hoặc 1; z=0 hoặc 1
=> (x,y,z)=(0;0;1) và các hoán vị
=> A=1.
có (x+1)^2+2
=x^2+2x+3
Đặt x^2+2x+3=a
=> x^2+2x+4=a+1
x^2+2x+7=a+4
pt <=>(a+4)/a=a+1
=> a^2+a=a+4
<=>a^2=4
<=>a=2 do x^2+2x+3>0
=> x^2+2x+3=2
<=> (x+1)^2=0
<=> x+1=0
<=> x=-1.