Hôm nay t đăng topic này lên để nói về vấn đề hiện nay. Trong suốt thời gian diễn ra trận đấu giữa VN và IRAQ, đã có ko ít topic lập nên để " thể hiện lòng yêu nước". Chỉ có một số ít,rất ít trong số đó là yêu nước thực sự, còn lại là một lũ a dua, người ta gọi đó là "đú" hay " đú trend". T ko hiểu tại sao có những đứa t thấy online để coment kiếm điểm cả tối nhưng khi có sự kiện j xảy ra trong trận đấu tụi nó cũng biết, như thể tụi nó đang xem, tụi nó "yêu nước"? Những hành động này gây loãng diễn đàn, " trẻ trâu tưởng thế là ngầu ", t lại thấy ngứa mắt. Và có một vài topic như vậy lại ko có nhũng người vào post nội quy? Va cuối cùng, nếu yêu nước hãy tắt máy và bật tv lên xem bóng đá chứ đừng ngồi đó như 1 lũ trẩu.Hết,mong kdv duyệt bài.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét pt (1) có \(\Delta'_1=a^2-bc\)
Xét pt (2) có \(\Delta'_2=b^2-ac\)
Xét pt (3) có \(\Delta'_3=c^2-ab\)
Có \(\Delta'_1+\Delta'_2+\Delta'_3=a^2+b^2+c^2-ab-bc-ca\)
\(\Rightarrow2\left(\Delta'_1+\Delta'_2+\Delta'_3\right)=2a^2+2b^2+2c^2-2ab-2ac-2bc\)
\(=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Rightarrow\Delta_1'+\Delta_2'+\Delta_3'\ge0\)
Nên tồn tại ít nhất một trong 3 delta phải lớn hơn hoặc bằng 0
=> Tồn tại ít nhất một trong 3 pt đã cho có nghiệm
Vậy ...........
![](https://rs.olm.vn/images/avt/0.png?1311)
\(ĐKXĐ:x;y\ge\frac{1}{2}\)
Chia cả 2 vế của pt cho x ; y ta được
\(\frac{\sqrt{2y-1}}{y}+\frac{\sqrt{2x-1}}{x}=2\)
Dễ dàng c/m được \(\hept{\begin{cases}\sqrt{2y-1}\le y\\\sqrt{2x-1}\le x\end{cases}\Rightarrow VT\le1+1=2}\)
Dấu "=" xảy ra <=>. x= y = 1
Vậy x = y = 1
Rất easy! Dùng Cô si ngược đê!
ĐKXĐ: \(x,y\ge\frac{1}{2}\)
Theo Cô si (ngược),ta có:
\(VT=x\sqrt{1\left(2y-1\right)}+y\sqrt{1\left(2x-1\right)}\)
\(VT\le x.\frac{2y-1+1}{2}+y.\frac{2x-1+1}{2}\)
\(=xy+yx=2xy=VP\)
Dấu "=" xảy ra \(\Leftrightarrow2x-1=2y-1=1\Leftrightarrow2x=2y=2\Leftrightarrow x=y=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Cách khác nhé!
Cộng từng vế của các pt trên lại ta được
\(3\left(x_1+x_2+x_3+...+x_{10}\right)=30\)
\(\Leftrightarrow x_1+x_2+x_3+...+x_{10}=10\)(*)
\(\Leftrightarrow\left(x_1+x_2+x_3\right)+\left(x_4+x_5+x_6\right)+\left(x_7+x_8+x_9\right)+x_{10}=10\)
\(\Leftrightarrow3+3+3+x_{10}=10\)
\(\Leftrightarrow x_{10}=1\)
Viết lại pt (*) ta được
\(\left(x_{10}+x_1+x_2\right)+\left(x_3+x_4+x_5\right)+\left(x_6+x_7+x_8\right)+x_9=10\)
\(\Leftrightarrow3+3+3+x_9=10\)
\(\Leftrightarrow x_9=1\)
Chứng minh tương tự cuối cùng được \(x_1=x_2=x_3=...=x_{10}=1\)
Vậy .............
Ta có:x1+x2+x3=x2+x3+x4=3
\(\Rightarrow\)x4-x1=0\(\Leftrightarrow\)x1=x4
cmtt ta có x1=x2=x3=...=x10
\(\Rightarrow\)x1=x2=x3=...=x10=1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}\ge\frac{9}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)\ge9abc\)
Áp dụng bất đẳng thức Cô-si cho 3 số được
\(\left(ab+bc+ca\right)\left(a+b+c\right)\ge3\sqrt[3]{ab.bc.ca}.3\sqrt[3]{abc}=9abc\left(Đpcm\right)\)
Dấu "=" xảy ra <=> a = b = c
Cách thông dụng nè:
Theo BĐT Cô si cho 3 số:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\) (1)
\(a+b+c\ge3\sqrt[3]{abc}\) (2)
Nhân theo vế (1) và (2),ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\ge9\)
Chia cả hai vế của BĐT cho a + b + c,ta được: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}^{\left(đpcm\right)}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa đề \(\hept{\begin{cases}3xy=2\left(x+y\right)\\5yz=6\left(y+z\right)\\4xz=2\left(x+z\right)\end{cases}}\)
Dễ thấy x = y = z = 0 ko phải là nghiệm của phương trình
Chia cả 2 vế của 3 pt lần lượt cho xy ; yz ; xz ta được
\(\hept{\begin{cases}3=\frac{2}{y}+\frac{2}{x}\\5=\frac{6}{z}+\frac{6}{y}\\4=\frac{2}{z}+\frac{2}{x}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{3}{2}\\\frac{1}{y}+\frac{1}{z}=\frac{5}{6}\\\frac{1}{x}+\frac{1}{z}=2\end{cases}}\)
Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)
Ta thu được hệ
\(\hept{\begin{cases}a+b=\frac{3}{2}\\b+c=\frac{5}{6}\\c+a=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b+c=\frac{13}{6}\\b+c=\frac{5}{6}\\c+a=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b+c=\frac{13}{6}\\a=\frac{4}{3}\\b=\frac{1}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{4}{3}\\b=\frac{1}{6}\\c=\frac{2}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=6\\z=\frac{3}{2}\end{cases}}\)
t thk thế mà, chả lwn quan đến bây nhá, thk quản ng khác lắm à! Yêu nước ko cần lm và thể hiên như thế, choa là trẻ trâu thì m sẽ là sửu nhi đc ch, thế m đã lm đc ch, đòi t lm chứ, vô duyên! ko bt cs đứa rảnh háng đi viết cái này!
Đã duyệt xog và đăng lên rồi toàn một lũ trẩu tre nên nói thế này cũng chịu !