K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2019

A B C D M I L E F N

Tham khảo bài anh Đạt ( có dùng đến Ta lét )

Câu hỏi của bạch thục quyên - Toán lớp 8 - Học toán với OnlineMath

19 tháng 11 2019

Xét hai \(\Delta ABC\)và \(ADE\)có:

\(AB=AD\left(gt\right)\)

\(\widehat{BAC}=\widehat{DAE}\)(vì hai góc đối đỉnh)

\(AC=AE\left(gt\right)\)

\(\Rightarrow\Delta ABC=\Delta ADE\left(c-g-c\right)\)

b) \(\Delta ABC=\Delta ADE\left(c-g-c\right)\)

\(\Rightarrow\widehat{ACB}=\widehat{AED}\)(hai góc tương ứng)

Mà hai góc này là vị trí so le nên 

\(DE\)// \(BC\)

đpcm.

c) đang nghĩ 

19 tháng 11 2019

a ) Xét \(\Delta\)ABC và \(\Delta\)ADE có :

  • AB = AD ( giả thiết )
  • AC = AE ( giả thiết )
  • BÂC = DÂE ( đối đỉnh )

\(\Rightarrow\)\(\Delta\)ABC = \(\Delta\)ADE ( c - g - c ) ( đpcm )

b )Ta có : \(\Delta\)ABC = \(\Delta\)ADE ( cm câu a )

 \(\Rightarrow\)DÊA = Góc ACB ( 2 góc tương ứng )

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow\)ED // BC ( đpcm )

c ) #Theo mình câu c là M là trung điểm BE và N là trung điểm DC nhé#

Xét \(\Delta\)BEC có :

  • M là trung điểm BE
  • A là trung điểm CE

\(\Rightarrow\)AM là đường trung bình của \(\Delta\)BEC

\(\Rightarrow\)AM // BC ( 1 )

Xét \(\Delta\)BDC có :

  • A là trung điểm BD
  • N là trung điểm DC

\(\Rightarrow\)AN là đường trung bình của \(\Delta\)BDC

\(\Rightarrow\)AN // BC ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)M , A , N thẳng hàng ( Theo tiên đề Ơ - clit )

18 tháng 11 2019

\(\left|5+x\right|=3x+1\)

\(\left|5+x\right|=5+x\)khi \(5+x>0\Leftrightarrow x< -5\)

\(\left|5+x\right|=-\left(5+x\right)\)khi \(5+x\le0\Leftrightarrow x\le-5\)

Với x < - 5 ta có:

\(pt\Leftrightarrow5+x=3x+1\Leftrightarrow-2x=-4\Leftrightarrow x=2\) (thoả mãn)

Với: \(x\le-5\) ta có

\(pt\Leftrightarrow-\left(5+x\right)=3x+1\Leftrightarrow-5-x=3x+1\Leftrightarrow-4x=6\Leftrightarrow x=-\frac{3}{2}\) (loại)

Vậy tập nghiệm của phương trình này là : S = 2

(Làm ngu đó vì chưa chắc dạng)

18 tháng 11 2019

\(|5+x|=3x+1\)

\(\Leftrightarrow\orbr{\begin{cases}5+x=3x+1\\5+x=-3x-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-3x=1-5\\x+3x=-1-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-2x=-4\\4x=-6\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{-3}{2}\end{cases}}\)

Vậy ...