K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2020

Giải pt (1) :(x+3)(2x+1)=0

  =>{x+3=0   /     {2x+1=0

=> {x=-3   /      {x=-1/2 

Để hai pt tương đương thì pt (2) nhận giá trị x=-3 và x=-1/2 .

+)Thay x=-3 vào pt (2) :

     (m-4)(-3)^2 - 2(2m+9)(-3) -4 =0

=> (m-4)9 + 6(2m+9) - 4 = 0

=> 9m - 36+ 12m + 54 - 4= 0

=> 21m + 14 = 0

=> 21m = -14

=> m= -2/3

 Vậy ...

18 tháng 4 2020

+) Thay x= -1/2 vào pt (2) :

     (m-4)(-1/2)^2 - 2(2m+9)(-1/2) -4 =0

=>1/4(m-4) + 2m +9 - 4 = 0

=>1/4m -1 +2m +9 - 4 =0

=>9/4m +4 =0

=>9/4m = -4 

=>m =-16/9

Vậy ...

22 tháng 3 2020

Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo.

22 tháng 3 2020

Chứng minh quy nạp theo n 

\(10^n+18n-1⋮27\)

+) với n = 0 ta có: \(10^0+18.0-1=0⋮27\)

=> (1) đúng với n =0

+) g/s (1) đúng cho tới n ( với n là số tư nhiên )

+) ta chứng minh (1) đúng với n + 1

Ta có: \(10^{n+1}+18\left(n+1\right)-1=10.10^n+18n+17=10\left(10^n+18n-1\right)-10.18n+10+18n+17\)

\(=10\left(10^n+18n-1\right)-9.18n+27⋮27\)

=> ( 1) đúng với n + 1

Vậy (1) đúng với mọi số tự nhiên n

22 tháng 3 2020

\(a^4+8a^3+14a^2-8a-15\)

\(a^4-a^3+9a^3-9a^2+23a^2-23a+15a-15\)

\(a^3\left(a-1\right)+9a^2\left(a-1\right)-23a\left(a-1\right)+15\left(a-1\right)\)

\(\left(a-1\right)\left(a^3+9a^2-23a+15\right)\)

22 tháng 3 2020

\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(\Rightarrow2A=8.\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

.....

\(=\left(3^{64}-1\right)\left(3^{64}+1\right)\)

\(=3^{128}-1\)

\(\Rightarrow A=\frac{3^{128}-1}{2}\)