tìm tất cả các số có 4 chữ số mà khi viết nó vào bên phải số 400 sẽ được một số chính phương?
mik L cho!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu c nhaaaaaaaa
Có: AF là phân giác DAE
=> \(DAF=EAF=\frac{DAE}{2}\)
Mà: DAE = 60 độ
=> \(EAF=30\)
=> Mà: AFE = 90 độ
=> \(AEF=180-90-30=60\)
=> \(AEB=120\) (Do: AEB và AEF là 2 góc kề bù)
Vậy góc BEA = 120 độ.
\(F\left(x\right)=ax^2+b\)
với \(F\left(0\right)=a0^2+b=-3\Leftrightarrow b=-3\left(2\right)\)
với\(F\left(1\right)=a1^2+b=-1\Leftrightarrow a+b=-1\left(1\right)\)
từ (1) và (2) ta có phương trình sau
\(\hept{\begin{cases}b=-3\\a+b=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}b=-3\\a+\left(-3\right)=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}b=-3\\a=2\end{cases}}\)
vậy b = -3 và a = 2
A = |x - 3| + |x + 7| + |x + 1|
A = (|3 - x| + |x + 7|) + |x + 1|
Ta có: |3 - x| + |x + 7| \(\ge\)|3 - x + x + 7| = 10
Dấu "=" xảy ra <=> (3 - x)(x + 7) \(\ge\)0
=> -7 \(\le\)x \(\le\)3 (1)
Ta lại có: |x + 1| \(\ge\)0
Dấu "=" xảy ra<=> x + 1 = 0 <=> x = -1 (2)
Từ (1) và (2) => x = -1
Vậy MinA = 10 + 0 = 10 khi x = -1
Vì Om là tia phân giác góc xOy nên :
góc xOm = góc mOy
mà góc zOt = góc xOm ( vì đối đỉnh )
=> góc zOt = góc mOy
Vậy góc zOt = góc mOy .
Học tốt
pt <=> \(\left(12k^2+10k+2\right)\left(5k+3\right)=192\)
<=> \(60k^3+86k^2+40k-186=0\)
<=> \(60k^3-60k^2+146k^2-146k+186k-186=0\)
<=> \(\left(k-1\right)\left(60k^2+146k+186\right)=0\)
<=> \(\orbr{\begin{cases}k=1\\60k^2+146k+186=0\end{cases}}\)
TA XÉT TH2:
=> \(900k^2+2190k+2790=0\)
<=> \(\left(30k+36,5\right)^2+1457,75=0\)
DO: \(\left(30k+36,5\right)^2\ge0\forall k\)
=> \(VT\ge1457,75>0\)
=> pt vô nghiệm
VẬY PT CÓ NGHIỆM DUY NHẤT \(x=1\)
gọi các cạnh của tam giác vuông là x,y,z trong đó z là cạnh huyền
theo đề ra ta có xy=2(x+y+z) (1) và x2+y2=z2
từ x2+y2=z2 => z2=(x+y)2-2xy thay vào (1) ta có z2=(x+y)2-4(x+y+z)
z2+4z=(x+y)2-4(x+y)
z2+4z+4=(x+y)2-4(x+y)+4
(z+2)2=(x+y-2)2
=> z+2=x+y-2
=> z=x+y-4 thay vào (1) ta được xy=2(x+y+x+y-4)
xy=4x+4y-8
xy=-4x-4y=-8
x(y-4)-4(y-4)-16=-8
(x-4)(y-4)=8
(x-4)(y-4)=1.8=2.4
từ đó tìm được (x;y;z)=(5;12;13);(12;5;13);(6;8;10);(8;6;10)
THAM khảo
Gọi a, b, c là số đo 3 cạnh của tam giác vuông cần tìm. Giả sử \(1\le a\le b\le c\)
Ta có hệ phương trình \(\hept{\begin{cases}a^2+b^2=c^2\left(1\right)\\ab=2\left(a+b+c\right)\left(2\right)\end{cases}}\)
Từ (1) \(c^2=\left(a+b\right)^2-2ab\)
\(\Leftrightarrow c^2=\left(a+b\right)^2-4\left(a+b+c\right)\)( theo (2))
\(\Leftrightarrow\left(a+b\right)^2-4\left(a+b\right)=c^2+4c\)
\(\left(a+b-2\right)^2=\left(c+2\right)^2\)
\(c=a+b-4\)
Thay vào (2) ta được
\(ab=2\left(a+b+a+b-4\right)\)
\(ab-4a-4b+8=0\)
\(\Leftrightarrow b\left(a-4\right)-4\left(a-4\right)=8\)
\(\Leftrightarrow\left(a-4\right)\left(b-4\right)=8\)
Phân tích 8 = 1.8 = 2.4 nên ta có:
\(\hept{\begin{cases}a=5\\b=12\end{cases}}\)hoặc \(\hept{\begin{cases}a=6\\b=8\end{cases}}\)
Từ đó ta có 2 tam giác vuông có các cạnh (5;12;13):(6;8;10)
CRE: inter
@dcv_new: thử tách theo cách x^4+x^2+6x-6-2 thử đi:)) chắc cũng ra á:)
\(x^4+x^2+6x-8=0\)
\(\Leftrightarrow\left(x^3+x^2+2x+8\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-x+4\right)\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-x+4\ne0\right)\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)( chắc dân chuyên như cậu hiểu chỗ này á )
Khi viết một số có 4 chữ số vào bên phải số 400 ta sẽ được số \(\overline{400abcd}\) (với \(a,b,c,d\inℕ;0\le\left\{b,c,d\right\}\le9;1\le a\le9\) do \(\overline{abcd}\) là số có 4 chữ số)
Ta có: \(2000^2< \overline{400abcd}< 2003^2\)
\(\Rightarrow\overline{400abcd}\in\left\{2001^2,2002^2\right\}\)
\(2001^2=4004001\Rightarrow\overline{abcd}=4001\)
\(2002^2=4008004\Rightarrow\overline{abcd}=8004\)
Vậy các số có 4 chữ số cần tìm là: \(4001,8004\)
Đáp số: \(4001,8004\)