K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

\(TXĐ:D=R\)

\(pt\Leftrightarrow\sqrt{\left(2x-1\right)^2+1^2}+\sqrt{\left(\sqrt{3}x+1\right)^2+\left(x+1\right)^2}\)

\(+\sqrt{\left(\sqrt{3}x-1\right)^2+\left(x+1\right)^2}=3\sqrt{2}\left(1\right)\)

Chọn \(\hept{\begin{cases}\overrightarrow{u}=\left(1;1-2x\right)\\\overrightarrow{v}=\left(\sqrt{3}x+1;x+1\right)\\\overrightarrow{w}=\left(1-\sqrt{3}x;x+1\right)\end{cases}}\)\(\Rightarrow\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}=\left(3;3\right)\)

\(\Rightarrow\left|\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}\right|=3\sqrt{2}\)(2)

Ta có: \(\left|\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}\right|\le\left|\overrightarrow{u}\right|+\left|\overrightarrow{v}\right|+\left|\overrightarrow{w}\right|\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2+1^2}+\sqrt{\left(\sqrt{3}x+1\right)^2+\left(x+1\right)^2}\)

\(+\sqrt{\left(\sqrt{3}x-1\right)^2+\left(x+1\right)^2}\ge3\sqrt{2}\)

Dấu "=" xảy ra khi \(\overrightarrow{u};\overrightarrow{v};\overrightarrow{w}\)cùng hướng

Từ (1) và (2) suy ra  \(\overrightarrow{u};\overrightarrow{v};\overrightarrow{w}\)cùng hướng

\(\Leftrightarrow\exists k,l>0\hept{\begin{cases}\overrightarrow{v}=k.\overrightarrow{u}\\\overrightarrow{v}=l.\overrightarrow{w}\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{3}x+1=k.1;x+1=k\left(1-2x\right)\\\sqrt{3}x+1=l\left(1-\sqrt{3}x\right);x+1=l\left(x+1\right)\end{cases}}\)

Vậy x = 0

5 tháng 2 2020

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm 

\(\Rightarrow\hept{\begin{cases}\sqrt{xy}\le\frac{x+y}{2}\\\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\end{cases}}\)

Cộng theo từng vế 

\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}\)

\(\Rightarrow1\le\frac{2\left(x+y+z\right)}{2}\)

\(\Rightarrow1\le x+y+z\)

\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\left(1\right)\)

Ta có : \(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)

Áp dụng bất đẳng thức cộng mẫu số :

\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)

\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{x+y+z}{2}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)

\(\Rightarrow\frac{1}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)

Vậy GTNN của \(A=\frac{1}{2}\)

Dấu " = " xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)

Chúc bạn học tốt !!!

5 tháng 2 2020

Ta có: \(1=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\)

=> \(x+y+z\ge1\)

Có: \(A\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{1}{2}\)

Dấu "=" xảy ra <=> x = y = z =1/3

Vậy min A = 1/2 <=> x = y = z = 1/3

5 tháng 2 2020

Giải bất phương trình đúng không nhỉ? Lần sau ra đề nhớ ghi cái đề -_-

~~~~~~~~~~~~~~~ Bài làm ~~~~~~~~~~~~~~~~~

Bất pt được biến đổi tương đương thành:

\(\frac{11x^2+5x+6}{x\left(x^2+5x+6\right)}\le0\)

\(\Rightarrow\) Tập \(n_0\) \(S=\left(-\infty;-3\right)\)\(∪\) \(\left(-2;0\right)\)

5 tháng 2 2020

Ta có:

\(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3\)

\(\Rightarrow VT-VP=a^3+b^3+c^3+ab+bc+ca-6\ge a^3+b^3+c^3-ab-bc-ca\) (Giải thích:\(-6\ge-2\left(ab+bc+ca\right)\Rightarrow a^3+b^3+c^3+ab+bc+ca-6\ge a^3+b^3+c^3-ab-bc-ca\))

Ta lại có:

\(a^3+b^3+c^3-ab-bc-ca\ge\frac{\left(a^2+b^2+c^2\right)^2}{a+b+c}-\frac{\left(a+b+c\right)^2}{3}\ge\frac{\left[\frac{\left(a+b+c\right)^2}{3}\right]^2}{3}-3=0\)

\(\Rightarrow VT-VP\ge0\)

\(\Rightarrow P\ge6\)

Nếu có không đúng thì nhớ nói nhe chớ đừng có k sai tui giống mấy lần trước nhe :(

6 tháng 2 2020

Bài ở dưới mình nhầm nhe.

Update

Ta có:

\(a^3+b^3+c^3\ge\frac{\left(a^2+b^2+c^2\right)^2}{a+b+c}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{3}\ge\frac{\left(a^2+b^2+c^2\right)\frac{\left(a+b+c\right)^2}{3}}{3}=a^2+b^2+c^2\)

\(\Rightarrow P\ge a^2+b^2+c^2+ab+bc+ca=\frac{a^2+b^2+c^2}{2}+\frac{\left(a+b+c\right)^2}{2}\ge\frac{\frac{\left(a+b+c\right)^2}{3}}{2}+\frac{9}{2}=6\)