Cho tam giác ABC kẻ BK vuông AC.K thuộc đường thẳng AC.Biết B=35 độ, BC=8cm,C=28 độ.Tính BK,AB,AC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D\(=\dfrac{a^2\left(a+1\right)+b^2\left(b-1\right)+a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(a+1\right)}=\dfrac{a^3+a^2+b^3-b^2+a^3b^2+a^2b^3}{\left(a+b\right)\left(1-b\right)\left(a+1\right)}\)
\(ĐKXĐ:a\ne-b;a\ne-1;b\ne1\)
\(D=\dfrac{a^2}{\left(a+b\right)\left(1-b\right)}-\dfrac{b^2}{\left(a+b\right)\left(1+a\right)}-\dfrac{a^2b^2}{\left(1+a\right)\left(1-b\right)}\)
\(=\dfrac{a^2\left(1+a\right)-b^2\left(1-b\right)-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1+a\right)\left(1-b\right)}\)
\(=\dfrac{a^3+a^2-b^2+b^3-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1+a\right)\left(1-b\right)}\)
\(=\dfrac{\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a+b\right)\left(a-b\right)-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1+a\right)\left(1-b\right)}\)
\(=\dfrac{\left(a+b\right)\left(a^2-ab+b^2+a-b-a^2b^2\right)}{\left(a+b\right)\left(1+a\right)\left(1-b\right)}\)
\(=\dfrac{a\left(a-b\right)+\left(a-b\right)+b^2\left(1-a^2\right)}{\left(1+a\right)\left(1-b\right)}\)
\(=\dfrac{\left(a-b\right)\left(a+1\right)-b^2\left(a-1\right)\left(a+1\right)}{\left(1+a\right)\left(1-b\right)}\)
\(=\dfrac{\left(1+a\right)\left(a-b-ab^2+b^2\right)}{\left(1+a\right)\left(1-b\right)}\)
\(=\dfrac{a-b-ab^2+b^2}{1-b}\)
\(=\dfrac{b\left(b-1\right)-a\left(b^2-1\right)}{1-b}=\dfrac{a\left(1-b\right)\left(1+b\right)-b\left(1-b\right)}{1-b}=\dfrac{\left(1-b\right)\left(a+ab-b\right)}{1-b}=a+ab-b\)
\(N=\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2+4\sqrt{x}\left(x-1\right)}{x-1}.\dfrac{x-1}{2x\sqrt{x}}\\ =\dfrac{x+2\sqrt{x}+1-\left(x-2\sqrt{x}+1\right)+4x\sqrt{x}-4\sqrt{x}}{2x\sqrt{x}}\\ =\dfrac{4x\sqrt{x}}{2x\sqrt{x}}=2\left(x>0;x\ne1\right)\)
\(C=\dfrac{1}{\sqrt{x}\left(x\sqrt{x}-1\right)}.\dfrac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\sqrt{x}+1}\\ =\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\sqrt{x}+1}\\ =\dfrac{1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{1}{x-1}\left(x>0;x\ne1\right)\)
\(a,b\ge1\)
- Áp dụng bất đẳng thức Caushy, ta có:
\(a\sqrt{\left(b-1\right).1}+b\sqrt{\left(a-1\right).1}\le a.\dfrac{\left(b-1\right)+1}{2}+b.\dfrac{\left(a-1\right)+1}{2}=\dfrac{ab}{2}+\dfrac{ab}{2}=ab\left(đpcm\right)\)
- Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}b-1=1\\a-1=1\end{matrix}\right.\Leftrightarrow a=b=2\)
a, Xét tam giác BKC vuông tại K
\(sinKCB=\dfrac{BK}{BC}\Rightarrow BK=sinKCB.BC\approx3,75cm\)
\(cosKCB=\dfrac{KC}{BC}\Rightarrow KC=BC.cosKCB\approx7cm\)
Xét tam giác BKA vuông tại K
\(sinKAB=\dfrac{BK}{AB}\Rightarrow AB=BK.sinKAB\approx3,34cm\)
bạn ktra lại đoạn AK giúp mình nhé