Chứng minh :
\(\frac{2n-1}{2n}\le\sqrt{\frac{3n-2}{3n+1}}\). Suy ra : \(\frac{1}{2}\times\frac{3}{4}\times...\times\frac{2n-1}{2n}\le\frac{1}{\sqrt{3n+1}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+..+\frac{1}{\sqrt{99}+\sqrt{100}}\)
\(=\frac{\sqrt{1}-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+...+\frac{\sqrt{99}-\sqrt{100}}{99-100}\)
\(=\frac{1-\sqrt{2}+\sqrt{2}-\sqrt{3}+...+\sqrt{99}-\sqrt{100}}{-1}\)
\(=\frac{1-\sqrt{100}}{-1}=9\)
\(b,B=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+..+\frac{1}{\sqrt{99}}\)
\(=\frac{2}{\sqrt{1}+\sqrt{1}}+\frac{2}{\sqrt{2}+\sqrt{2}}+\frac{2}{\sqrt{3}+\sqrt{3}}+...+\frac{2}{\sqrt{99}+\sqrt{99}}>\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{99}+\sqrt{100}}\)\(\Rightarrow B>2\left(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+..+\frac{1}{\sqrt{99}+\sqrt{100}}\right)\)
\(\Rightarrow B>2\left(\frac{\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+...+\sqrt{99}-\sqrt{100}}{-1}\right)\)
\(\Rightarrow B>2\left(\frac{1-\sqrt{100}}{-1}\right)\)
\(\Rightarrow B>2.9=18\left(ĐPCM\right)\)
Câu hỏi của Trần Thanh Phương - Toán lớp 9 | Học trực tuyến
Tự lực cánh sinh thôi...
\(\frac{a^4}{a^3+2b^3}=a-\frac{2ab^3}{a^3+b^3+b^3}\ge a-\frac{2ab^3}{3ab^2}=a-\frac{2}{3}b\)
tương tự cộng lại ta có đpcm
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=d\)
Xét tứ giác AFDC có:
AFC =90 , ADC=90(gt)
mà 2 góc này cùng nhìn cạnh AC
nên tứ giác AFDC nội tiếp đường tròn đường kính AC hay A,C,D,F cùng thuộc một đường tròn
Xét tứ giác AEHF có"
AFH =90 AEH=90(gt)
AFH+AEH =180
mà 2 góc này nằm ở vị trí đối nhau
nên tứ giác AEHF nội tiếp đường tròn đường kính AH
hay A,F,H,E cùng thuộc một đường tròn
Câu 1:
a,Bạn tự vẽ
b,Phương trình hoành độ giao điểm của (d1) và (d2) là:
\(\(\(-2x+3=x-1\Rightarrow-3x=-4\Rightarrow x=\frac{4}{3}\)\)\)
\(\(\(\Rightarrow y=\frac{4}{3}-1=\frac{1}{3}\)\)\)
Vậy tọa độ giao điểm của (d1) và (d2) là \(\(\(\left(\frac{4}{3};\frac{1}{3}\right)\)\)\)
c,Đường thẳng (d3) có dạng: y = ax + b
Vì (d3) song song với (d1) \(\(\(\Rightarrow\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Rightarrow\hept{\begin{cases}a=-2\\b\ne3\end{cases}}\)\)\)
Khi đó (d3) có dạng: y = -2x + b
Vì (d3) đi qua điểm A( -2 ; 1) nên \(\(\(\Rightarrow x=-2;y=1\)\)\)
Thay x = -2 ; y = 1 vào (d3) ta được:\(\(\(1=-2.\left(-2\right)+b\Rightarrow b=-3\)\)\)
Vậy (d3) có phương trình: y = -2x - 3
Câu 2:
\(A=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}\left(a>0;b>0;a\ne b\right)\)(Đề chắc phải như này)
\(\(\(=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}.\frac{\sqrt{a}-\sqrt{b}}{1}\)\)\)
\(\(\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)\)\)
\(\(\(=\sqrt{a}^2-\sqrt{b}^2\)\)\)
\(\(\(=a-b\)\)\)
ĐK: x-y>0
pt (2) <=> \(x^2+y^2-\frac{8xy}{x-y}=16\)
<=> \(x^2+y^2-2xy-\frac{8xy}{x-y}-16+2xy=0\)
<=> \(\left(x-y\right)^2-\frac{8xy}{x-y}-16+2xy=0\)
<=> \(\left(x-y\right)^3-16\left(x-y\right)+2xy\left(x-y\right)-8xy=0\)
<=> \(\left(x-y\right)\left(x-y-4\right)\left(x-y+4\right)+2xy\left(x-y-4\right)=0\)
<=> \(\left(x-y-4\right)\left[\left(x-y\right)\left(x-y+4\right)+2xy\right]=0\)(a)
Vì \(\left(x-y\right)\left(x-y+4\right)+2xy=\left(x-y\right)^2+4\left(x-y\right)+2xy=x^2+y^2+4\left(x-y\right)>0\)
Nên (a) <=> \(x-y-4=0\Leftrightarrow x=y+4\)thế vào pt (1) ta có:
\(\sqrt{4}+9=2y^2-\left(y+4\right)\Leftrightarrow2y^2-y-15=0\)
Em làm tiếp nhé! giải đen ta ra nghiệm đẹp.
Với n = 0,7 thì BĐT đúng chăng?