cho hình thoi ABCD có góc BAD =40 độ.gọi o là giao điểm 2 đường chéo.gọi H là hình chiếu vuông góc của O trên AB.trên tia đối tia BC lấy điểm M,trên tia đối tia DC lấy điểm N,sao cho HM song song AN.CMR tam giác ABH đồng dạng tam giác ADN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2+4\sqrt{x}\left(x-1\right)}{x-1}.\dfrac{x-1}{2x\sqrt{x}}\\ =\dfrac{x+2\sqrt{x}+1-\left(x-2\sqrt{x}+1\right)+4x\sqrt{x}-4\sqrt{x}}{2x\sqrt{x}}\\ =\dfrac{4x\sqrt{x}}{2x\sqrt{x}}=2\left(x>0;x\ne1\right)\)
\(C=\dfrac{1}{\sqrt{x}\left(x\sqrt{x}-1\right)}.\dfrac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\sqrt{x}+1}\\ =\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\sqrt{x}+1}\\ =\dfrac{1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{1}{x-1}\left(x>0;x\ne1\right)\)
\(a,b\ge1\)
- Áp dụng bất đẳng thức Caushy, ta có:
\(a\sqrt{\left(b-1\right).1}+b\sqrt{\left(a-1\right).1}\le a.\dfrac{\left(b-1\right)+1}{2}+b.\dfrac{\left(a-1\right)+1}{2}=\dfrac{ab}{2}+\dfrac{ab}{2}=ab\left(đpcm\right)\)
- Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}b-1=1\\a-1=1\end{matrix}\right.\Leftrightarrow a=b=2\)
a/
\(AB=\sqrt{BC^2-AC^2}=\sqrt{20^2-12^2}=16cm\)
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{20}=\dfrac{3}{5}\) Từ đó suy ra góc \(\widehat{B}\)
\(\widehat{C}=90^o-\widehat{B}\)
b/
Xét tg vuông AHF có
\(HF^2=HN.HA\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền) (1)
Xét tf vuông CHF có
\(HF^2=HM.HC\) (lý do như trên) (2)
Từ (1) và (2) \(\Rightarrow HN.HA=HM.HC\)
c/
Xét tg vuông ABC có
\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{16^2}{20}=12,8cm\)
Xét tg vuông ABH có
\(AH=\sqrt{AB^2-BH^2}=\sqrt{16^2-12,8^2}=9,6cm\)
Xét tg vuông AHC có
\(AH^2=AF.AC\Rightarrow AF=\dfrac{AH^2}{AC}=7,68cm\)
Xét tg vuông AHF có
\(HF=\sqrt{AH^2-AF^2}=\sqrt{9,6^2-7,68^2}=5,76cm\)
Ta dễ dàng c/m được HMFN là hình chữ nhật
=> MN=HF=5,76 cm (đường chéo hình chữ nhật)
Ta có
HC=BC-BH=20-12,8=7,2 cm
Áp dụng t/c đường phân giác có
\(\dfrac{AK}{AH}=\dfrac{CK}{HC}\Rightarrow\dfrac{AK}{CK}=\dfrac{AH}{HC}=\dfrac{9,6}{7,2}=\dfrac{4}{3}\)
\(\Rightarrow AK=\dfrac{AC}{4+3}.4=6,8cm\)
=> KF=AF-AH=7,68-6,8=0,88cm
Xét tg vuông HFK có
\(HK=\sqrt{HF^2+KF^2}\) bạn tự tính nốt nhé
\(\sqrt{98};\sqrt{80};\sqrt{54};\sqrt{97};\sqrt{99}\)
\(\Rightarrow6\sqrt{3};4\sqrt{5};\sqrt{97};7\sqrt{2};3\sqrt{11}\)
\(7\sqrt{2}=\sqrt{98}\)
\(4\sqrt{5}=\sqrt{80}\)
\(6\sqrt{3}=\sqrt{108}\)
\(3\sqrt{11}=\sqrt{99}\)
Vây \(4\sqrt{5},\sqrt{97},7\sqrt{2},3\sqrt{11},6\sqrt{3}\)