cho a = 11..1( n số 1) và b = 100...011(n-2 số 0). Chứng minh rằng ab+4 là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x+2\ge0\Leftrightarrow x\ge-2\)
pt đã cho \(\Rightarrow x^2-8x+16=x^2+4x+4\) \(\Leftrightarrow12x=12\) \(\Leftrightarrow x=1\left(nhận\right)\)
Vậy pt đã cho có nghiệm duy nhất là \(x=1\)
+) \(\left(3\sqrt{2}+2\sqrt{3}\right)\left(2\sqrt{3}-3\sqrt{2}\right)=\left(2\sqrt{3}\right)^2-\left(3\sqrt{2}\right)^2\\ =12-18=-6\)
+) \(\sqrt{\left(4+\sqrt{10}\right)^2}-\sqrt{\left(4-\sqrt{10}\right)^2}\\ =\left|4+\sqrt{10}\right|-\left|4-\sqrt{10}\right|\\ =4+\sqrt{10}-\left(4-\sqrt{10}\right)\\ =2\sqrt{10}\)
+) \(\dfrac{1}{\sqrt{2013}-\sqrt{2014}}-\dfrac{1}{\sqrt{2014}-\sqrt{2015}}\\ =\dfrac{\sqrt{2013}+\sqrt{2014}}{\sqrt{2013}^2-\sqrt{2014}^2}-\dfrac{\sqrt{2014}+\sqrt{2015}}{\sqrt{2014}^2-\sqrt{2015}^2}\\ =\dfrac{\sqrt{2013}+\sqrt{2014}-\left(\sqrt{2014}+\sqrt{2015}\right)}{-1}\\ =\sqrt{2015}-\sqrt{2013}\)
+) \(\sqrt{3-2\sqrt{2}}+\sqrt{6-4\sqrt{2}}+\sqrt{9-4\sqrt{2}}\\ =\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}-1\right)^2}\\ =\sqrt{2}-1+2-\sqrt{2}+2\sqrt{2}-1\\ =2\sqrt{2}\)
Đặt \(P=ab+4\)
Ta thấy \(a=111...11\) (n chữ số 1) \(=\dfrac{1}{9}.999...99\) (n chữ số 9) \(=\dfrac{10^n-1}{9}\) và \(b=100...011\) (\(n-2\) chữ số 0) \(=100...000+11\) n chữ số 0) \(=10^n+11\).
Do đó ta có \(P=ab+4=\dfrac{10^n-1}{9}.\left(10^n+11\right)+4\) \(=\dfrac{\left(10^n\right)^2+11.10^n-10^n-11+36}{9}\) \(=\dfrac{\left(10^n\right)^2+10^n+25}{9}=\left(\dfrac{10^n+5}{3}\right)^2\)
Ta thấy \(10^n+5\) có tổng các chữ số chia hết cho 3 nên \(10^n+5⋮3\) hay \(\dfrac{10^n+5}{3}\inℕ^∗\). Từ đó \(\left(\dfrac{10^n+5}{3}\right)^2\) là số chính phương. Vậy \(ab+4\) là số chính phương.